ОНД-90

ОБЩЕСОЮЗНЫЙ НОРМАТИВНЫЙ ДОКУМЕНТ


РУКОВОДСТВО
ПО КОНТРОЛЮ ИСТОЧНИКОВ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

ОНД-90

Часть II

РАЗРАБОТАН отделом контроля атмосферы Всесоюзного научно-исследовательского института охраны природы и заповедного дела Министерства природопользования и охраны окружающей среды СССР

Исполнители канд. физ.-мат. наук В.Б.Миляев (научный руководитель разработки); Б.М.Бевзюк, В.Д.Григорьев (разд.7, 9); Л. И. Давыдова (разд.2, 3); Ю.А.Дергунов (разд.3, 6, 10); канд. техн. наук В.С.Матвеев (разд.1, 5, 6, 9, 11); Б.К.Нурмеев (разд.5, 11); А.В.Оглоблин (разд.3, 6, 7, 11); канд. физ.-мат. наук Н.И.Орлов (раздел 9); М.Ю.Прокофьев (разд.6, 8); Т.И.Самуйлова (разд.3. 7, 9, 12); канд. хим. наук Е.Н.Семенюк, Н.Н.Звягина (разд.6, 7, 12); Е.И.Соловьева (разд.10); канд. хим. наук С.В.Тимаков (раздел 3, 5, 7); канд. хим. наук В.В.Цибульский (раздел 6); канд. техн. наук А.Н.Ясенский (раздел 4); канд. техн наук С.Т.Евдокимова, канд. техн. наук А.И.Алексеев

УТВЕРЖДЕН заместителем председателя Госкомприроды СССР В.Г.Соколовским. Постановление N 8 от 30 октября 1990 г.

Срок действия с 1 января 1991 г. по 1 января 1996 г.

 СПИСОК ЛИТЕРАТУРЫ

1. Алиев Г.М. Техника пылеулавливания и очистки промышленных газов. - М.: Металлургия, 1989.

2. Альбом типовых форм первичной учетной документации по охране атмосферного воздуха. - М.: Союзучетиздат, 1982.

3. Бумакова Н.Г. и др. Контроль за выбросами в атмосферу и работой газоочистных установок на предприятиях машиностроения. - М.: Машиностроение, 1984.

4. Васильченко Н.М. и др. Газоочистное оборудование. Каталог. - М.: Изд. Цинтихимнефтемаш, 1988.

5. Временная методика нормирования промышленных выбросов в атмосферу (расчет и порядок разработки нормативов предельно допустимых выбросов). - Л.: Изд. ГГО, 1981.

6. Временное руководство по контролю источников выбросов загрязняющих веществ в атмосферу с применением газоаналитических приборов. - Л.: Изд. ГГО, 1986.

7. Гордон Г.М., Пейсахов И.Л. Промышленная утилизация и очистка газов в цветной металлургии. - М.: Металлургия, 1977.

8. Ежегодник состояния загрязнения воздуха и выбросов вредных веществ в атмосферу городов и промышленных центров Советского Союза. - Л.: Изд. ГГО, 1988.

9. Защита атмосферы от промышленных загрязнений / Под ред. С.Калверта, Г.М.Инглунда. - М.: Металлургия, 1988.

10. Инструкция о порядке составления отчета об охране атмосферного воздуха по форме N 2-ТП (воздух). - М.: Союзучетиздат, 1987.

11. Инструкция по нормированию выбросов (сбросов) загрязняющих веществ в атмосферу и в водные объекты, N 09-2-8/1573 от 14.09.89. - М.: Изд. Госкомприроды СССР, 1989.

12. Инструкция по инвентаризации выбросов загрязняющих веществ в атмосферу. - Л.: ЛДНТП, 1991.

13. Исследования в области охраны окружающей среды. - Труды НИИУИФ. вып.239, 1981.

14. Маршалл С. Защита окружающей среды в целлюлозно-бумажной промышленности. - М.: Лесная промышленность, 1981.

15. Матвеев В.С. Современные технические средства контроля промышленных выбросов в атмосферу. - Л.: Изд. ДНТП, 1989.

16. Металлургия алюминиевых сплавов. - М.: Металлургия, 1972.

17. Металлургия меди, никеля, кобальта / Под ред. И.Ф.Худянова, А.М.Тихонова. - Л.: Металлургия, 1977.

19. Методические рекомендации по проведению инвентаризации выбросов в атмосферу оксидов азота на ETC СССР. - Л.: Изд. ГГО, 1990.

20. Методические указания по определению и расчету вредных выбросов из основных источников предприятий нефтеперерабатывающей и нефтехимической промышленности. - М.: Изд. Миннефтехимпром, 1984.

21. Моцус Н.Г. и др. Фильтры для улавливания промышленных пылей. - М.: Машиностроение, 1985.

22. Mуравьева С.М., Казнина Н.И., Прохорова Е.К. Справочник по контролю вредных веществ в воздухе. - М.: Химия, 1988.

23. Очистка и рекуперация промышленных выбросов / Под ред. В.Ф.Максимова, И.В.Вольфа. - М.: Лесная промышленность, 1981.

24. Предельно допустимые концентрации химических веществ в окружающей среде. Справочник. - М.: Химия, 1987.

25. Рекомендации по оформлению и содержанию проекта нормативов предельно допустимых выбросов в атмосферу (ПДВ) для предприятия. - М.: Изд. Госкомприроды СССР, 1989.

26. Руководство по расчету количества и удельных показателей выбросов вредных веществ в атмосферу. М.: 1982.

27. Сборник законодательных нормативных и методических документов для экспертизы воздухоохранных мероприятий. - Л.: Гидрометеоиздат, 1986.

28. Сборник методик по определению концентраций загрязняющих веществ в промышленных выбросах*. - Л.: Гидрометеоиздат, 1987.

________________

* Документ не приводится. За дополнительной информацией обратитесь по ссылке, здесь и далее по тексту. - Примечание изготовителя базы данных.

29. Сборник методик по расчету выбросов в атмосферу загрязняющих веществ различными производствами. - Л.: Гидрометеоиздат, 1986.

30. Сборник нормативно-технических документов по охране атмосферного воздуха, поверхностных вод и почв от загрязнения. - М.: Гидрометеоиздат, 1983.

31. Типовая инструкция по организации системы контроля промышленных выбросов в отрасли промышленности. - Л.: Изд. ГГО, 1986.

 8. МЕТОДОЛОГИЯ ИЗМЕРЕНИЯ ТЕРМОДИНАМИЧЕСКИХ
ПАРАМЕТРОВ ПОТОКА В ИЗА

Все термодинамические параметры потока целесообразно измерять одновременно в одном и том же мерном сечении газохода. Так как эти измерения необходимы не только для определения объема отходящих газов, но и для отбора проб аэрозольных частиц, место измерения параметров газовых потоков предпочтительно выбирать на вертикальных участках газоходов, при установившихся потоках газов. Принимается, что поток газа имеет ламинарный характер, если точки замера расположены на расстоянии пяти-шести диаметров газохода после места возмущения и трех-четырех диаметров газохода до места возмущения (задвижка, дроссель, повороты, вентиляторы и т.д.). Если нельзя выбрать мерное сечение, отвечающее этим требованиям, то можно проводить изменерия на прямолинейном участке газохода, разбив его в соотношении приблизительно 3:1 в направлении движения газового потока. Методики определения скоростей газовых потоков при помощи пневмометрических трубок достаточно полно и хорошо изложены в работе [28].

Необходимо остановиться на области применения интегральных приборов для определения скорости газовых потоков. Их применение целесообразно только для газовых потоков без аэрозольных частиц, так как в случае запыленного потока определение поля скоростей необходимо еще и для выбора режимов отбора проб.

Температуру газовых потоков измеряют техническими средствами, описанными в п.6.1, однако возможно применение и других средств, позволяющих получить аналогичные по точности результаты. Все измерительные средства вводят в газоход на длину рабочей части. Показания необходимо снимать, не вынимая измерительное средство из газохода (исключение составляют максимальные термометры).

При наличии в газовом потоке аэрозольных частиц, особенно капельной влаги, термометры и другие приборы надо защищать чехлом для предотвращения попадания влаги на рабочую поверхность прибора. Не рекомендуется проводить измерения в зонах интенсивного теплообмена.

При измерении давления (разрежения) в газоходах используют средства, описанные в п.6.1. Необходимо параллельно измерять атмосферное давление. Техника измерений не отличается от обычных метеорологических измерений, при этом необходимо учитывать температурную и приборную поправки, приводимые в паспорте на прибор.

Для измерения влажности в газоходах применяют различные методы. Так как методики с применением аспирационных психрометров, конденсационных и других методов достаточно полно описаны в работе [28], отметим только некоторые особенности их применения.

Газ надо очистить от твердых аэрозольных частиц при помощи метода внутренней фильтрации, использование метода внешней фильтрации может привести к заниженным результатам. В случае конденсационных методов необходимо измерять влажность на выходе из ловушки. Особенно сложны паро-газовые смеси с аэрозольной фазой, содержащей в значительном количестве как воду, так и другие компоненты, например отходящие газы сернокислотного производства после установок мокрой очистки. В этом случае влажность определяют по разнице между суммарным содержанием жидкой фазы и содержанием второго компонента в этой фазе. В этом случае расчет проводят по соотношению

,                                                                                  (8.1)

где - масса воды в конденсатосборнике; - суммарная масса жидкости в конденсатосборнике; и - массы и в конденсатосборнике.

Очевидно, что в таких случаях применимы только конденсационные методы.

8.1. МЕТОДИКА ИЗМЕРЕНИЯ СКОРОСТИ ПОТОКА*

__________________

* Методика разработана в СКБ ВТИ В.Б.Эткиным и др.

В настоящем пункте приводится методика измерения скорости потоков воздуха в воздуховодах и вентиляционных коробах, имеющих круглую или прямоугольную форму поперечного сечения с размерами более 300 мм, с помощью термоанемометров электрических типа ТЭ.

8.1.1. СРЕДСТВА ИЗМЕРЕНИЯ И ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА

8.1.1.1. При выполнении измерений надо применять измерительные установки, средства измерений и вспомогательные устройства, перечисленные в табл.8.1.

 Таблица 8.1

     
Перечень средств измерений и вспомогательных устройств

Средство измерения

Обозначение ПТД, чертежа или метрологическая характеристика

Измеряемая физическая величина

Первичный преобразователь термоанемометра электрического (ППТЭ)

АП 321.00.00.00

Скорость потока воздуха

Блок смещения и нормализации сигнала

АП 553.00.00.00

-

Термопара типа ТХК 0806

0-200 °С

ТУ 25-02.221134-78

Температура

Вольтметр постоянного тока Ш1413

0-30 В кл. 0,06

ТУ 25-04-2125-72

Электрическое напряжение

Источник питания типа
Б5-29

0-30 В

2 А

Е30.323.426 ТУ

-

Прибор вторичный регистрирующий типа КСУ-2

0-5 мА, класс точности 1,5

ГОСТ 7164-78

Сила электрического тока

Прибор вторичный регистрирующий типа КСП-2

0-200 °С, класс точности 1,5

ГОСТ 7164-78

Температура

Прибор вторичный интегрирующий типа НКИ-7

Вход 0-5 мА

ТУ 25-04-722290-80

Сила электрического тока

Примечание. Можно применять другие приборы, аналогичные указанным по техническим характеристикам и имеющие класс точности не ниже указанного.

Можно принять информационно-измерительные системы (ИИС), тип которых должен быть определен схемой АСУ ТП.

8.1.1.2. Для измерения скорости потока воздуха применяют термоанемометры типа ТЭ, представляющие собой первичный преобразователь ППТЭ, работающий в комплекте с блоком смещения и нормализации сигнала типа БСН (в дальнейшем блок).

Преобразователи преобразуют местную скорость тока воздуха в сигнал, который с помощью блока преобразуется в унифицированный сигнал напряжения 0-10 В или сигнал постоянного тока 0-5 мА, поступающий на регистратор типа КСУ.

Функция преобразования комплекта

или ,                                                                                       (8.2)

где - скорость потока воздуха, м/с;

           - напряжение постоянного тока, В;

- сила постоянного электрического тока, А;

и - коэффициенты пропорциональности.

8.1.1.3. Преобразователи обеспечивают измерение скорости потока воздуха в диапазоне 3-32 м/с.

8.1.1.4. Предельную допустимую относительную погрешность термоанемометра ТЭ, вызванную неравномерностью распределения скорости в мерном сечении, определяют по табл.8.2.

Таблица 8.2

     
Дополнительная относительная погрешность, %

Форма мерного сечения

Число точек измерения

Расстояние от места возмущения потока до мерного сечения, в гидравлических диаметрах

1

2

3

5

>5

Круг

4

20

16

12

6

3

8

16

12

10

5

2

12

12

8

6

3

2

Прямоугольник

4

24

20

15

8

4

16

12

8

6

3

2

8.1.1.5. Метрологические характеристики приборов комплекта термоанемометра приведены в табл.8.3.

                    Таблица 8.3

Метрологическая характеристика комплекта термоанемометра


Прибор

Предел основной приведенной
допускаемой погрешности,
%

Систе- мати-
ческая состав- ляющая, %

Вариация
выходного
сигнала,
%

Дополнительная погрешность в долях основной погрешности от влияния (не более)

отклонения температуры (на каждые 10 °С)

интенсив-
ности

средней рабо-
чей от средней градуировочной

потока от
средней рабочей

твердых частиц

угла нате-
кания

турбу-
лентных пульсаций

Термоанемометр типа ТЭ, в том числе:

4

2,5

0,3

0,1

0,2

0,5

1

1

Датчик ППТЭ

3,5

2,5

0,2

0,1

0,2

0,5

1

1

Блок смещения и нормализации сигнала БСН

1

0,2

-

-

-

-

-

8.1.1.6. Питание каждого преобразователя осуществляют стабилизированным напряжением постоянного тока 24±0,054 В.

8.1.1.7. Мощность, потребляемая преобразователем, не выше 36 Вт.

8.1.1.8. Устройство для ввода преобразователя должно обеспечивать возможность его установки на заданном по ГОСТу 12.3.018-79 расстоянии от внутренней стенки воздуховода до оси преобразователя и его установку в заданном положении соосно с газоходом.

8.1.2. МЕТОД ИЗМЕРЕНИЯ

8.1.2.1. Измерение скорости потока воздуха термоанемометрами типа ТЭ основано на законе вынужденной конвективной теплоотдачи от предельно обтекаемого потоком тела, обогреваемого стабилизированным источником тепла.

8.1.2.2. Для определения средней скорости в мерном сечении необходимо измерить преобразователями местную скорость в некоторых заданных точках поперечного сечения воздуховода (по ГОСТу 12.3.018-79). Скорость в мерном сечении определяют по соотношению

,                                                                                                          (8.3)

где - число преобразователей, установленных в поперечном сечении воздуховода;

- порядковый номер преобразователя;

- местная скорость, измеренная -м преобразователем, м/с.

8.1.2.3. Координаты точек измерения скорости потока воздуха и число точек определяются формой и размерами мерного сечения (черт.8.1) по ГОСТу 12.3.018-79.

Черт.8.1. Установка датчиков ППТЭ в воздуховодах круглого (а) и прямоугольного (б) сечения:
1 - газоход, 2 - датчики ППТЭ, - мерное сечение воздуховода, - размер

Максимальное отклонение координат точек измерений не должно превышать ±10% по ГОСТу 12.3.018-79.

 8.1.3. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ

8.1.3.1. Измерение и обработку результатов измерений должен выполнять техник, ознакомленный с требованиями ПТЭ, ПТБ, назначением, схемой и устройством термоанемометра типа ТЭ в объеме инструкции по эксплуатации, с порядком подготовки термоанемометра к работе и порядком определения технического состояния системы контроля скорости потока воздуха.

 8.1.4. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

8.1.4.1. При выполнении измерений надо соблюдать условия, указанные в табл.8.4.

 Таблица 8.4

     
Условия выполнения измерений

Параметр

Средняя температура рабочей среды, °С

Напряжение питания, В

Частота тока питания, Гц

Скорость потока воздуха, м/с

20-165 (±15)

220 (±22...33)

50 (±1)

Температура внутри воздуховода или короба, °С

20-165 (±15)

-

-

Параметр

Массовая доля влаги внутри воздуховода при температуре 20±2 °С, %

Интенсивность турбулентных пульсаций, %

Угол натекания,
град.

Запыленность рабочей среды, кг/м

Скорость потока воздуха, м/с

30-98

0,2-10

0-5

0-0,1

Температура внутри воздуховода или короба, °С

30-98

-

-

Примечание. 1. В скобках - предельное отклонение скорости и температуры от номинальных значений. 2. Среднюю температуру рабочей среды оговаривает заказчик в пределах 20-165 °С. 3. В воздуховодах электростанций при соблюдении условий монтажа, указанных в пп.8.1.4.2 и 8.1.4.3, интенсивность турбулентных пульсаций, запыленность рабочей среды и угол натекания не выходят за пределы, указанные в табл.8.4.

8.1.4.2. Мерное сечение выбирают на наиболее длинном прямолинейном участке воздуховодов или вентиляционных систем.

8.1.4.3. Преобразователь устанавливают на прямом участке воздуховода соосно ему. Мерное сечение выбирают в воздуховодах на расстоянии не менее шести гидравлических диаметров за ближайшим местным сопротивлением (отвод, шибер, диафрагма и т.д.) и не менее двух гидравлических диаметров до ближайшего местного сопротивления, расположенного за мерным сечением.

При отсутствии прямолинейного участка необходимой длины можно располагать мерное сечение в месте, делящем выбранный для измерения участок в отношении 3:1 в направлении движения потока.

8.1.4.4. Блок, регистрирующие приборы, линии связи и клеммные коробки следует располагать так, чтобы исключить воздействие на них потоков воздуха, вибрации, конвективного и лучистого тепла, влияние которых превышает значения, указанные в технических условиях на соответствующие элементы системы контроля.

8.1.5. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

8.1.5.1. Готовить приборы к измерениям необходимо в соответствии с их паспортами и действующими инструкциями по их эксплуатации.

8.1.5.2. При подготовке к выполнению измерений проводят следующие работы:

  1. 1) преобразователи ППТЭ и блок подключают по схеме, приведенной на черт.8.2;

Черт.8.2. Схема включения термоанемометра ТЭ:

1 - датчик ППТЭ, 2 - блок смещения и нормализации сигнала (БСН), 3 - термоанемометр ТЭ,
4 - вторичный прибор, 5 - блок питания

2) подают напряжение питания на блок и прогревают не менее 30 мин;

3) включают блок питания и устанавливают напряжение питания преобразователей 24±0,054 В. При этом следует учесть падение напряжения, измеряя его в период наладки на участке 1-5 (см. черт.8.2) в линиях связи преобразователей с блоком питания. Напряжение контролируют при помощи вольтметра;

4) после прогрева датчиков в течение 1 ч выполняют измерения.

8.1.6 ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

8.1.6.1. При проведении измерений определяют скорость и температуру потока воздуха. Снимая показания с диаграммной ленты потенциометра типа КСУ-2, определяют соответствующие им значения скорости по характеристике термоанемометра. Xapaктеристика приведена в документации, входящей в комплект поставки термоанемометра*.

____________________

* Каждый термоанемометр градуируется на стенде завода-изготовителя и имеет индивидуальную характеристику.

Температуру определяют потоком воздуха с помощью термопары, сигнал с которой поступает на потенциометр типа КСП-2.

8.1.7. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

8.1.7.1. Обработку результатов измерений скорости потока воздуха следует выполнять путем расшифровки записи диаграммной ленты потенциометра типа КСУ-2. Допускается непосредственное визуальное наблюдение за показаниями регистрирующего прибора КСУ-2, имеющего шкалу, выполненную в единицах скорости потока.

8.1.7.2. Текущее значение объемного расхода воздуха в мерном сечении воздуховода определяют по соотношению

,                                                                                                      (8.4)


где - расход воздуха, м/с;

- поперечное сечение измерительного участка воздуховода, м.

Интегральное значение расхода воздуха за любые промежутки времени (отчетный период) определяют путем интегрирования текущих значений расхода воздуха с помощью интегратора типа ПВИ-7 или ЭВМ АСУТП.

8.1.7.3. Результаты измерения температуры потока воздуха обрабатывают путем расшифровки записи диаграммной ленты потенциометра типа КСП-2.

8.1.7.4. Абсолютную суммарную погрешность измерения скорости воздуха термоанемометром (м/с) определяют 1 раз для выбранного сечения по соотношению

,                                                   (8.5)


где - нормирующее значение диапазона измерения скорости, м/с;

4 - предел основной приведенной допускаемой относительной погрешности термоанемометра, %;

3,35 - значение, учитывающее предельные дополнительные относительные погрешности от влияния запыленности, турбулентности, угла атаки потока и отклонения его температуры на ±15 °С от среднего значения (см. табл.8.3);

- средняя температура воздуха на измерительном участке, °С;

- температура, при которой градуировались преобразователи термоанемометра, °С;

- предельная относительная погрешность, связанная с неравномерностью поля скоростей измеряемого потока, % (см. табл.8 3);

0,01 - доля основной погрешности на каждый градус отличия рабочей температуры от грудуировочной, °С.

Значения других составляющих дополнительной погрешности малы по сравнению с указанными и ими можно пренебречь.

8.2. МЕТОДИКА ИЗМЕРЕНИЯ ВЛАЖНОСТИ*


_________________

*Методика разработана сотрудником НИИОГАЗ И.И.Могилко.

Методика рекомендуется для измерения влажности газа, не насыщенного водяными парами.

Нормы точности измерения определяют по ГОСТу 17.24.02-81*.

______________

* Вероятно ошибка оригинала. Следует читать: ГОСТ 17.2.4.02-81.

8.2.1. МЕТОДЫ ИЗМЕРЕНИЯ

8.2.1.1. Психрометрический метод. Применяют для измерения влажности газов, температура которых не превышает 60 °С. Метод основан на косвенном определении парциального давления водяных паров по показаниям температуры влажного и сухого термометров, последовательно обтекаемых струей газа.

8.2.1.2. Конденсационный метод. Основан на измерении количества влаги в пробе газа известного объема, отбираемою из газохода, путем охлаждения его ниже точки росы. Влажность газа определяют как сумму сконденсированной влаги, отнесенной к единице объема газа, прошедшего через конденсатор, и абсолютной влажности насыщенного газа после конденсатора.

8.2.2. СРЕДСТВА ИЗМЕРЕНИЙ И ОБОРУДОВАНИЕ

При измерении влажности газа применяют следующие средства измерений и оборудование:

- U-образный жидкостный манометр, ГОСТ 9933-75Е;

- барометр-анероид типа БАММ-1, ТУ 15-04-1616-72;

- термометр лабораторный для точных измерений типов ТЛ-19, ТЛ-20, ГОСТ 215-73;

- весы лабораторные ВЛР-200М, ГОСТ 24104-80Е;

- реометр стеклянный лабораторный РДС-4, ГОСТ 9932-75;

- секундомер механический, ГОСТ 5072-79;

- холодильник спиральный ХСВ01ОХС, ГОСТ 25336-82;

- колба коническая Кн-2-250-40 ТС, ГОСТ 25336-82;

- трубка медицинская резиновая типа 1, ГОСТ 3399-76;

- средства измерения температуры газа - в соответствии с методикой измерения температуры газа в газоходе.

Можно заменить указанные средства измерений на аналогичные, не уступающие им по метрологическим характеристикам.

8.2.3. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

При выполнении измерений надо соблюдать следующие условия:

- пробу необходимо отбирать так, чтобы исключить выпадение влаги по газовому тракту до психрометра или конденсатора;

- не допускается попадание пыли в приборы.

Психрометрический метод можно использовать для определения влажности газов, не содержащих пары серной кислоты.

 8.2.4. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

Собирают измерительную схему для психрометрического или для конденсационного метода (черт.8.3 и 8.4).

Черт.8.3. Схема измерения влажности газа психрометрическим методом:

1 - фильтр, 2 - диафрагма, 3 - газоход, 4 - манометр,  5 - психрометр, 6 - реометр

Черт.8.4. Схема измерения влажности газа методом конденсации

1 - фильтр, 2 - холодильник, 3 - термометр, 4 - газоход, 5 - колба коническая, 6 - манометр, 7 - реометр, 8 - диафрагма

Проверяют механическое состояние и исправность оборудования, целостность и чистоту измерительной схемы.

Проверяют на герметичность прибор и соединительные линии. Для этого, закрыв входное отверстие канала и подсоединив микроманометр, в схеме создают давление порядка 1000 Па и следят за постоянством показаний микроманометра. Падение давления за 10 с не должно превышать двух делений по шкале микроманометра.

Психрометр заливают дистиллированной водой. По реометру устанавливают расход отбираемого газа около 20 л/мин и схему прогревают отбираемым газом в течение 10-15 мин.

8.2.5. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

8.2.5.1. Психрометрический метод. При проведении измерений предварительно отфильтрованный от пыли газ поступает в психрометр через входной патрубок и омывает сначала сухой, а затем влажный термометр и выходит из устройства через выходной патрубок.

Через прибор устанавливают расход газа не менее 20 л/мин, при этом скорость омывания газом сухого термометра должна быть не менее 5 м/с.

Показания термометров снимают через каждые 5 мин или реже, в зависимости от изменения влажности газа. Следует сделать не менее 5 измерений.

Результаты измерений записывают в журнал наблюдений.

8.2.5.2. Конденсационные метод.

Устанавливают расход охлаждающей воды через конденсатор так, чтобы температура газа после конденсатора была на 10-15 °С ниже температуры точки росы.

При проведении измерений необходимо следующее:

- не допускать уноса брызг или тумана из прибора,

- не допускать конденсации влаги в подводящих трубках,

- фиксировать температуру газа после конденсатора,

- измерить количество пропущенного через схему газа.

Количество сконденсировавшейся влаги определяется взвешиванием сборника конденсата до и после отбора пробы. Общее количество конденсата должно быть не менее 30 см. Следует сделать не менее 5 измерений.

Результаты измерений записывают в журнал наблюдений.

8.2.6. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

8.2.6.1. Психрометрический метод. Парциальное давление водяных паров (при условиях внутри психрометра) рассчитывают по соотношению:

,                                                                                         (8.6)

где - парциальное давление водяного пара, кПа; - давление насыщенного водяного пара при температуре влажного термометра ; - температура сухого термометра, °С; - температура влажного термометра, °С; - избыточное давление (разрежение) в приборе, кПа; - коэффициент, зависящий от скорости движения газа около влажного термометра (при скоростях газа более 5 м/с ).

Парциальное давление водяных паров в газе при давлении (разрежении) газа в газоходе рассчитывают по соотношению:

,                                                                      (8.7)

где - атмосферное давление, кПа.

Относительную влажность газа рассчитывают по соотношению

,                                                                                                       (8.8)

где - парциальное давление насыщенного водяного пара при температуре газа, кПа.

По парциальному давлению насыщенного газа можно определить следующие величины:

  1. 1) концентрацию водяных паров во влажном газе , г/м;

  2. 2) массовую долю влаги во влажном газе при нормальных условиях ( °С, кПа) , г/м;

  3. 3) массовую долю влаги в сухом газе при нормальных условиях , г/м.

Концентрацию водяного пара в газе определяют по соотношению

,                                                                                                      (8.9)

где - концентрация водяного пара в газе, г/кг или кг/кг сухого газа; - плотность сухого газа, кг/м.

8.2.6.2. Конденсационный метод. Объем газа, прошедшего через реометр (в литрах) при измерении влажности газа, рассчитывают по соотношению:

,                                                                                (8.10)

где - показания реометра, л/мин; - время отбора пробы, мин; - атмосферное давление, Па; - температура газа, °С; - разность статического и атмосферного давления перед диафрагмой реометра, Па; - плотность воздуха при условиях градуировки реометра, кг/м; - плотность сухого газа при нормальных условиях:

,                                                                                           (8.11)

где - объемное содержание -го компонента в газе, %; - плотность -го  компонента при нормальных условиях, кг/м.

Содержание водяных паров в 1 м сухого газа при нормальных условиях (кг/м) рассчитывают по соотношению:

,                                                         (8.12)

где - масса конденсата, г; - давление насыщенных водяных паров при температуре .

8.2.7. ОЦЕНКА ПОГРЕШНОСТИ ИЗМЕРЕНИЯ

Погрешность измерения влажности газов оценивают по ГОСТу 8.207-76.

Для условий, изложенных в настоящей методике, погрешность измерения влажности психрометрическим и конденсационным методами не превышает ±10% при доверительной вероятности 0,95.

8.3. МЕТОДИКА ИЗМЕРЕНИЯ ДАВЛЕНИЯ*


__________________

* Методика разработана сотрудником НИИОГАЗ И.И.Могилко.

Методика рекомендуется для измерения статического давления газа в газоходах.

Метод измерения основан на измерении с помощью средств измерений статического давления как разности давления газов в газоходе по отношению к атмосферному давлению.

Статическое давление измеряют путем 1) непосредственного отбора в газоходе или 2) с помощью пневмометрической трубки.

 8.3.1. СРЕДСТВА ИЗМЕРЕНИЙ И МАТЕРИАЛЫ

Микроманометры типа ММН-240 (5)-1, ГОСТ 11164-84, U-образные жидкостные манометры, ГОСТ 9933-75E, манометры (вакуумметры), показывающие класс точности 1,5; пневмометрические трубки (см. методику измерения скорости и расхода газов); спирт этиловый, ГОСТ 17299-78; трубка медицинская резиновая типа 1, ГОСТ 3399-76.

Можно заменять указанные средства измерений на аналогичные, не уступающие им по метрологическим характеристикам.

8.3.2. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

Измерительное сечение выбирают на прямых участках газохода. Длина прямого участка газохода перед измерительным сечением должна быть возможно большей, т.е. измерительное сечение необходимо располагать как можно дальше от любых местных сопротивлений, способных вызвать асимметрию, закрученность и повышенную турбулентность потока, но не менее 5-6 диаметров газохода до места измерения и 3-4 диаметров после места измерения.

В прямых газоходах статистическое давление можно измерять в одной точке у стенки. Для газоходов диаметром более 500 мм статическое давление необходимо измерять в четырех точках, расположенных на двух взаимноперпендикулярных диаметрах и объединенных для усреднения статического давления кольцевым трубопроводом, присоединяемым к измерительному прибору (черт.8.5).

Черт.8.5. Схема измерения статического напора в газоходе при постоянном контроле:

1 - стенка газохода, 2 - патрубок, 3 - соединительный трубопровод

При значительном возмущении газового потока, движущегося в газоходе (после задвижек, колец, циклонов и т.д.), поток необходимо выпрямить, установив в газоходе перед измерительным сечением выпрямитель потока, изготавливаемый из тонких радиально расположенных пластин длиной 1,0-1,5 диаметра газохода.

8.3.3. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

Для измерения статического давления в металлической стенке газохода просверливают отверстие диаметром 5-8 мм, кромки отверстия защищают от заусенцев и закругляют с внутренней стороны газохода. К стенке 1 газохода приваривают отрезок трубы или патрубок 2 (см. черт.8.5).

При проведении временных измерений в качестве соединительных линий применяют резиновые трубки диаметром не менее 4 мм. Когда расстояние до средства измерений превышает 15 м, следует применять трубки большего диаметра. При проведении стационарных измерений средства измерений присоединяют к газоходу, используя газовые трубы диаметром 10-38 мм.     

Диаметр труб определяется степенью запыленности газов, значением измеряемого давления или разности давлений и отдаленностью средства измерений от измерительного сечения. При измерении давления газов с запыленностью менее 100 мг/м, давления 2,5 кПа и более и при расстоянии от измерительного сечения не более 15 м можно применять газовые трубы диаметром 10 мм. При измерении давления газов с запыленностью, превышающей 100 мг/м, давления до 250 Па и при расстоянии до измерительного сечения не более 50 м диаметр газовых труб следует увеличить до 25-38 мм.

Измерительную схему после сборки необходимо проверить на герметичность. Для этого в системе создают давление, превышающее рабочее давление в газоходе примерно на 25%, и, закрыв измерительные отверстия, следят за стабильностью показаний средства измерения давления в течение 15-30 м. Если система герметична, то показания средства измерения не изменяются более чем на 10%.

К выполнению измерения давления при помощи пневмометрических трубок готовятся по “Методике измерения скорости и расхода газов в газоходах и вентиляционных системах“. Средства измерения должны быть проверены и иметь клеймо или свидетельство о поверке. Требования к пневмометрическим трубкам должны соответствовать “Методике измерения скорости и расхода газов в газоходах и вентиляционных системах“.

8.3.4. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ И ОБРАБОТКА РЕЗУЛЬТАТОВ

При измерении статического давления при помощи пневмометрической трубки к одному микроманометру или U-образному манометру присоединяют штуцер зонда для измерения полного давления, измеряют динамическое давление по “Методике измерения скорости и расхода газов в газоходах и вентиляционных системах“. При выполнении измерений необходимо следить за тем, чтобы носик пневмометрической трубки не отклонялся от направления газового потока более чем на 5°. Измерения проводят в тех же измерительных точках, что и при измерении скорости газа.

Статическое давление в каждой измерительной точке рассчитывают по соотношению

,                                                                                                  (8.13)

где и - полное и динамическое давление газа в измерительных точках газохода.

Среднее статистическое давление газа в газоходе рассчитывают по формуле

,                                                                                                       (8.14)

где - число измерительных точек в сечении газохода.

При измерении статического давления в газоходе с помощью штуцера, размещенного в газоходе, значение статического давления снимают непосредственно со средств измерения. Средства измерений выбирают в зависимости от значения статического давления в газоходе. Для давления не более 2,5 кПа применяют микроманометры с наклонной трубкой типа ММН-240; для давления до 10 кПа - U-образные манометры. Для давления более 5 кПа - манометры технические общего назначения.

Пределы измерений на манометре или угол установки трубки микроманометра в целях уменьшения погрешности измерений необходимо выбирать так, чтобы показания средств измерений находились в последней трети шкалы средства измерений.

При измерении давления газов, содержащих агрессивные компоненты, тип манометров, необходимо производить с учетом стойкости материала элементов, контактирующих с данным газом.

8.3.5. ОЦЕНКА ПОГРЕШНОСТИ ИЗМЕРЕНИЯ

Оценка погрешности измерений давления газов производится по ГОСТу 8.207-76 и включает в себя:

  1. 1) оценку среднего квадратического отклонения результата измерения;

  2. 2) определение доверительных границ случайной погрешности результата измерения;

  3. 3) определение доверительных границ неисключенной систематической погрешности результата измерения;

  4. 4) определение границы погрешности результата измерения.

Для условий, изложенных в настоящей методике, погрешность измерения статического давления в газоходе не превышает ±5% при доверительной вероятности 0,95.

8.4. МЕТОДИКА ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ*


__________________

* Методика разработана сотрудником НИИОГАЗ И.И.Могилко.

Методика рекомендуется для измерения температуры газов в газоходах не более 1000 °С.

Метод измерения основан на зондовом контактном методе измерения температуры газов с использованием в качестве средств измерений термометров и термоэлектрических преобразователей температуры (термопар).

8.4.1. СРЕДСТВА ИЗМЕРЕНИЙ И МАТЕРИАЛЫ

Технические характеристики применяемых термометров приведены в табл.8.5.

Таблица 8.5

Технические характеристики термометров

Прибор

Цена деления, °С

Пределы измерения, °С

Интервал температуры, °С

Погрешность, °С

Термометр лабораторный
химический типа ТЛ-2, ГОСТ 215-73

1

0-100

0-100

±1

0-150

101-200

±2

0-250

201-300

±3

0-350

301-350

±4

Термометр лабораторный
палочный высокоградусный типа ТЛ-3, ГОСТ 215-73

2

0-450

0-200

± 2

0-500

201-400

±4

0-600

201-500

±5

         Используются также следующие приборы:

  1. 1) преобразователи термоэлектрические типа ТХА-0306, ТУ 25.02.1133-75 и ТУ 25-02.1136-73. Пределы измерения 0-1000 °С. Инерционность не более 3,5 мин. Длина монтажной части 160, 200, 320, 400, 800 и 1250 мм;

  2. 2) вторичные измерительные приборы к термопарам:

    - пирометрические милливольтметры типа М-64, МР-64, МВУ6, Ш4500, Ш4501, Ш69003 и др. с классом точности 1,5, градуировкой ХА;

    - переносной потенциометр типа ПП-63, класс точности 0,02;

    - автоматические электронные потенциометры типа КСР, КСУ, КСМ и др. с классом точности 0,5, градуировкой ХА.

Можно заменять указанные средства измерений на аналогичные, не уступающие им по метрологическим характеристикам.

8.4.2. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

Температуру газов следует измерять там же, где измеряют скорость, давление, влажность, запыленность и другие характеристики потока, или в плоскости, находящейся на расстоянии не более 0,5 диаметра газохода от измерительного сечения.

Число измерительных точек для измерения температуры определяют в зависимости от эквивалентного диаметра газохода :

, м

<1,0

1,0-2,5

2,5

1

2

4

Среднюю температуру газа надо измерять в ядре потока, поэтому измерительные точки надо располагать следующим образом:

для - на оси газохода,

для - по кольцу от 1/6 до 1/3 или на полосе от 1/6 до 1/3 линейного размера прямоугольного газохода. Измерительные точки в этом случае надо располагать в противоположных по отношению к оси газохода областях и измерения в разных точках надо производить одновременно.

 8.4.3. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

На газоходе в местах установки средств измерений оборудуют штуцеры для термометров (термопар) аналогично методике измерения скорости и расхода газов.

Собирают измерительную схему и устанавливают средства измерений (черт.8.6). Места их установки уплотняют для устранения подсосов воздуха от окружающей среды.

Черт.8.6. Схема установки термопары:

1 - термопара в защитном кожухе, 2 - соединительные провода, 3 - измерительный прибор

Глубина погружения средства измерений в газоход должна соответствовать паспортной.

Для устранения методических погрешностей необходимо:

  1. 1) не допускать утечек теплового потока в месте установки средств измерений;

  2. 2) обеспечить минимальное тепловое сопротивление между рабочим концом средства измерений и газовым потоком;

  3. 3) при размещении термоприемника в защитном металлическом чехле или гильзе для улучшения теплопередачи, т.е. уменьшения динамической погрешности, гильзу заполняют маслом, металлическими опилками или снабжают специальными внутренними радиаторами;

  4. 4) при измерении температуры дымовых газов термоприемник следует экранировать от теплового излучения более нагретых тел: пламени, раскаленных участков кладки печи и т.д.;

  5. 5) при измерениях температуры среды в высокочастотном электромагнитном поле нельзя применять ртутные термометры и другие температурные зонды с массивным металлическим термоприемником.

Средства измерений должны быть поверены и иметь клеймо или свидетельство о поверке.

Перед проведением измерений необходимо провести внешний осмотр термометров. При этом проверяют:

  1. 1) отсутствие повреждений термометра (трещин, сколов и т.д.);

  2. 2) отсутствие разрывов столбика жидкости в капилляре и следов испарившейся жидкости на его стенках;

  3. 3) отсутствие смещения шкалы относительно капилляра и возможное скручивание капилляра по оси.

Правильность подключения компенсационных проводов к термопарам проверяют следующим образом: при включенном вторичном приборе компенсационные провода отключают от термопары, соединяют и место соединения подогревают. Стрелка прибора должна показывать увеличение температуры.

При монтаже компенсационные провода надо тщательно экранировать, а экран заземлить. Если компенсационные провода не имеют металлической оплетки, их следует прокладывать в заземленных металлических трубах.

Проверяют соответствие градуировки вторичного прибора типу применяемых термопар.

8.4.4. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

После установки средства измерений в заданную точку газохода дается время на прогрев его до температуры газового потока. Время прогрева зависит от инерционности средства измерений и определяется по соотношению     

                                                                                                                         (8.15)

где - инерционность средства измерений.

При измерении температуры при помощи термопар (если вторичные приборы, работающие в комплекте с термопарами, не имеют автоматической компенсации температуры свободных концов) необходимо обеспечить стабилизацию температуры их свободных концов, для чего термопары помещают в сосуд с тающим льдом или в процессе измерений контролируют температуру свободных концов. Для этого необходимо поместить рядом со свободными концами достаточно точный термометр и обеспечить условия, при которых его температура будет равна температуре свободных концов термопар.

Измерения температуры в каждой из точек проводят не менее 3 раз.

8.4.5. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

При использовании термопар в комплекте с вторичными приборами, измеряющими развиваемую термопарой ЭДС в милливольтах, необходимо перевести значения ЭДС в температуру по градуировочным таблицам ГОСТ 3044-77. При этом необходимо учитывать, что градуировочные таблицы составлены для температуры свободных концов 0 °С.

Если при проведении измерений температура свободных концов не равна 0 °С, в измеренное значение ЭДС термопары необходимо ввести поправку:

,                                                                               (8.16)

где - значение ЭДС с учетом поправки, мВ;

-  измеренное значение ЭДС термопары, мВ;

- ЭДС, определяемая по ГОСТу 3044-77 по измеренной температуре свободных концов для термопар применяемой градуировки.

В этом случае значение температуры газов определяют по ГОСТу 3044-77 по значению ЭДС с учетом поправки.

Среднюю термодинамическую температуру газового потока, определяемую по измеренным значениям температуры в измерительных точках сечения газохода (), рассчитывают по соотношению

.                                                                                             (8.17)

 8.4.6. ОЦЕНКА ПОГРЕШНОСТИ ИЗМЕРЕНИЯ

Погрешность измерения температуры оценивают по ГОСТу 8.207-76. При выполнении условий, изложенных в настоящей методике, погрешность измерения температуры газа определяется погрешностью средств измерений:

  1. 1) термометра - для измерения температуры при помощи термометра;

  2. 2) термопары и вторичного прибора - для измерения температуры при помощи термопары и может быть рассчитана по соотношению

    ,                                                                                            (8.18)

  3. где - погрешность термопары;

    - погрешность вторичного прибора.

 9. МЕТОДОЛОГИЯ ОПРЕДЕЛЕНИЯ МАССОВЫХ ВЫБРОСОВ ЗВ

Определение массовых выбросов ЗВ является основной задачей инспекционного контроля ИЗА и может быть произведено на основе непосредственного измерения концентраций ЗВ и скорости потока в ИЗА или с использованием расчетных методов определения массовых выбросов.

Во всех возможных случаях при определении массовых выбросов следует предполагать непосредственное измерение с использованием инструментального или инструментально-лабораторного методов.

9.1. ОПРЕДЕЛЕНИЕ МАССОВЫХ ВЫБРОСОВ ПО РЕЗУЛЬТАТАМ ИЗМЕРЕНИЙ

9.1.1. Время измерения массового выброса ЗВ (в граммах в секунду) выбирают исходя из характера технологического процесса и его суточного хода так, чтобы измеряемый интервал совпал с периодом максимального выброса.

Размер массового выброса ЗВ зависит от их концентрации и объема отходящих газов. Последний, в свою очередь, зависит от скорости потока газа и площади сечения газохода.

Методики определения концентрации ЗВ приведены в разделе 7, скорости потока отходящих газов - в разделе 8 Руководства. Площадь сечения газохода определяют по технической документации на данную технологическую установку или непосредственным измерением. Концентрация ЗВ и скорость потока могут быть постоянными или переменными как по сечению газохода, так и по времени.

Когда скорость газа и концентрация вредных веществ в различных точках сечения газохода не постоянны, для определения значения выброса необходимо предварительно площадь сечения разбить на ряд равновеликих элементарных площадок, в пределах которых можно принять эти параметры в определенный момент времени постоянными. Газоход круглого сечения условно разбивают на концентрические равновеликие кольца. Газоход прямоугольного сечения - на ряд равновеликих площадей, геометрически подобных всему сечению.

Методика разбивки сечения на элементарные площадки описана в работе [28].

9.1.2. За основу расчета массового выброса в фиксированный момент времени через элементарную площадку сечения газохода принято соотношение

,                                                                               (9.1)

где - массовый выброс ЗВ через элементарную площадку, г/с;

- концентрация вредных веществ в пределах элементарной площадки, г/м;

- скорость потока газа через элементарную площадку, м/с;

- площадь элементарной площадки газохода, м.

9.1.3. Массовый выброс в фиксированный момент времени через все сечение газохода рассчитывают по соотношению

,                                                                    (9.2)

где - число равновеликих элементарных площадок.

Если концентрация и скорость меняются не только по сечению, но и по времени, валовый выброс за определенный интервал времени определяется соотношением

,                                                        (9.3)

где - число измерений за определенный интервал наблюдений.

При использовании автоматических газоанализаторов , при использовании инструментально-лабораторных методов .

При параллельном отборе проб в качестве берут среднее значение концентрации при параллельных измерениях.

При технологических процессах, имеющих несколько стадий, существенно отличающихся размером выброса, необходимо провести измерения на каждой из стадий процесса. Можно определять выброс только на стадии с априорно-максимальным выбросом загрязняющего вещества. Для повышения достоверности результатов при инструментально-лабораторном методе необходимо последовательно отбирать три-пять проб.

Соотношение (9.3) является обобщенным, пригодным для всех вариантов сочетаний параметров ИЗА и их характеристик.

Далее приведены некоторые частные случаи определения массовых выбросов в зависимости от конкретных характеристик концентрации и скорости, наиболее часто встречающихся в практике.

9.1.4. Для стационарных процессов с равномерным распределением скорости потока и концентрации отходящих газов по сечению

.                                                                                                  (9.4)

9.1.5. Для стационарных процессов с переменным по сечению профилем скорости потока и концентрации газов

.                                                                                 (9.5)

9.1.6. Для процессов с равномерным распределением концентраций и скоростей по сечению (т.е. для потоков с интенсивным перемешиванием газов) и постоянной по времени концентрацией ЗВ

.                                                                                     (9.6)

9.1.7. Для процессов со стационарным по времени и равномерным по сечению профилем концентраций

 .                                                                         (9.7)

9.1.8. Рекомендуется до проведения измерений детально ознакомиться с характеристикой технологических процессов, обращая внимание на наличие циклов, стадий, периодов и возможных изменений значений выбросов. Эту информацию надо использовать и в выборе варианта расчета массового выброса.

Если ИЗА связан с несколькими источниками выделений, массовый выброс можно определять как сумму выбросов по каждому источнику выделения.

Если выброс цикличен, то массовый выброс определяют за цикл и суммируют по числу циклов за необходимый интервал времени.

9.2. РАСЧЕТНЫЕ МЕТОДИКИ ОПРЕДЕЛЕНИЯ МАССОВЫХ ВЫБРОСОВ

На практике часто невозможно или нерационально применять инструментальные измерения. К числу таких случаев относятся следующие:

- контроль ЗВ, для которых отсутствуют разработанные и согласованные методики инструментально-лабораторного анализа,

- контроль ИЗА при возникновении экстремальных ситуаций, когда необходимо быстро оценить опасный выброс;

- контроль ИЗА при недостаточной представительности ряда аналитических измерений;

- контроль ЗВ, трансформирующихся в процессе рассеяния в атмосфере [26].

При этом достаточно эффективными могут быть расчетные методы контроля, позволяющие сделать первичные оценки, а иногда и с приемлемой точностью определить значения массовых выбросов ЗВ в атмосферу.

Количество выбрасываемых ЗВ рассчитывают только по методикам, согласованным с Отделом контроля атмосферы ВНИИ охраны природы и заповедного дела Министерства природопользования СССР (до 1988 г. - с Главной геофизической обсерваторией им. А.И.Воейкова Госкомгидромета СССP). Часть таких рекомендованных расчетных методик объединена в работе [29]. К разрабатываемым новым расчетным методикам предъявляются требования, изложенные в методическом письме ГГО N 4617/23 от 04.06.86 “Требования к построению, содержанию и изложению расчетных методик определения выбросов вредных веществ в атмосферу“.

Расчетные методики можно использовать (по согласованию с территориальными комитетами по охране природы) в следующих случаях:

  1. 1) при инвентаризации выбросов в атмосферу (при отсутствии иных методов контроля);

  2. 2) при разработке проектов ПДВ (в большей степени для проектируемых предприятий);

  3. 3) для первичной оценки значений залповых и аварийных выбросов;

  4. 4) для установления приоритетности контроля предприятий.

Рассмотрение расчетных методик показывает, что основной вклад в суммарные погрешности определения значений выбросов вносят погрешности определения удельных выделений и шаги табулирования параметров, входящих в соотношения для определения валовых выбросов. В целом относительные погрешности определения выбросов расчетными методами значительно больше, чем инструментальными. Так, например, погрешности определения количества выбросов при плавке металлов превышают 25%, при окраске - 20%, при гальванических процессах - 100%.

Наиболее точными являются расчетные методики определения сварочных выбросов (5%). Таким образом, расчетные методы имеют ограниченные сферы применения и постепенно должны быть вытеснены инструментальными и инструментально-лабораторными методами.

Перечень основных рекомендуемых расчетных методик определения выбросов ЗВ приведен в прил.3.

 9.3. МЕТОДОЛОГИЯ ОПРЕДЕЛЕНИЯ МАССОВЫХ ВЫБРОСОВ
С ПРИМЕНЕНИЕМ ПЕРЕДВИЖНОЙ ЛАБОРАТОРИИ
КОНТРОЛЯ ПРОМЫШЛЕННЫХ ВЫБРОСОВ

9.3.1. ПЕРЕДВИЖНАЯ ЛАБОРАТОРИЯ КОНТРОЛЯ ИСТОЧНИКОВ
ПРОМЫШЛЕННЫХ ВЫБРОСОВ (ПЛКПВ)

Лаборатория предназначена для инспекционного контроля и обследования промышленных предприятий в целях определения фактических значений выбросов ЗВ и их соответствия установленным нормативам ПДВ. Эффективность работы лаборатории зависит от степени автоматизации процесса измерения параметров отходящих газов и обработки полученной информации. Решению этих задач способствуют включение в состав станции специально разработанного устройства сбора и обработки информации, разработка алгоритма оптимизации процессов измерения и обработки информации и математического обеспечения инспекционного контроля с использованием диалоговой ЭВМ. Состав и технические характеристики ПЛКПВ приведены в разделе 6 Руководства.

В ПЛКПВ используются два основных способа определения массовых выбросов ЗВ прямой (путем измерения концентрации ЗВ и термодинамических параметров газового потока) и расчетный.

Блок-схема лаборатории и схема организации информационно-вычислительного комплекса (ИВК) приведены в разделе 6 Руководства.

Использование ИВК позволяет оперативно с высокой точностью определять массовый выброс как с применением расчетных методов, так и на основании измеренных прямым путем значений концентрации компонентов газовой смеси, средней скорости потока в газоходе и других необходимых величин. При этом значения получают, используя инструментальные или инструментально-лабораторные методы анализа.

9.3.2. ОБЩИЙ АЛГОРИТМ ОПРЕДЕЛЕНИЯ МАССОВОГО ВЫБРОСА ЗВ

Алгоритм задается основной программой, включающей в себя три основных режима работы:

  1. 1) режим расчета с использованием балансовых методов, банка стандартных данных и основных технических параметров источника;

  2. 2) режим прямого определения на основании данных инструментального контроля;

  3. 3) режим расчета по данным инструментально-лабораторного анализа.

Эти режимы автономны и выделены в самостоятельные блоки, не взаимодействующие между собой, но координируемые основной программой. Блоки работают в диалоговом режиме, т.е. основная программа выбирает необходимый режим работы (последовательность режимов при их совместном использовании), анализ работы различных блоков, печать конечных данных и протокола обследования (контроля). Блок-схема основной программы приведена на черт.9.1.

Черт.9.1 Блок-схема основной программы:

ППЗУ - постоянное запоминающее устройство, ГМД - гибкие магнитные диски, МЛ - магнитная лента,
М - массовый выброс ЗВ, ИЛА - инструментально-лабораторный анализ

9.3.3. СТРУКТУРА РЕЖИМОВ ОПРЕДЕЛЕНИЯ МАССОВЫХ ВЫБРОСОВ

9.3.3.1. Балансовые методы расчета выбросов. Блок состоит из программы расчета массового выброса и банка данных в виде набора таблиц. Программа организована так, что за необходимыми сведениями обращаются либо к внешним носителям, либо к оперативной памяти машины, либо к оператору. Поскольку для различных отраслей промышленности существует своя методика, то при расширении набора методик целесообразно каждую методику заносить на отдельный внешний носитель.

9.3.3.2. Прямое определение массовых выбросов. На черт.9.2 приведена блок-схема расчета по данным прямого контроля параметров газового потока с использованием инструментальных средств. Массовый выброс рассчитывают по осредненным за 20 мин значениям и , измеряемым синхронно в режиме скользящего среднего с интервалом 1 мин. В алгоритме предусмотрен вариант расчета по номинальному значению , причем в памяти хранится только максимальное значение . Результатом является набор значений , приведенных к нормальным условиям с фиксацией времени для каждого значения .

Черт.9.2. Блок-схема алгоритма расчета массового выброса :

    - скорость потока газовой смеси, - скорость потока по паспорту  технической установки: - концентрация -го компонента газовой смеси, и - температура и давление в газоходе, - массовый выброс -го компонента,
- площадь сечения газохода, - максимальный массовый выброс -го компонента,
  - приведенный к нормальным условиям
максимальный массовый выброс -го компонента

9.3.3.3. Расчет no данным инструментально-лабораторного анализа. Режим включает в себя ввод с помощью клавиатуры исходных данных по определенным при анализе значениям и измеренным значениям и выполнение вычислительных операций по известным соотношениям для .

9.3.4. ПОДГОТОВКА К ПРОВЕДЕНИЮ РАБОТ ПО КОНТРОЛЮ ИЗА

Перед выездом на объект персонал, обслуживающий лабораторию, должен проверить надежность закрепления аппаратуры и особое внимание обратить на баллоны с поверочными газовыми смесями.

Персонал, обслуживающий лабораторию, до начала работ по контролю должен ознакомиться c технологическими регламентами контролируемых производств и установок.

Перед началом работ надо произвести контрольный осмотр пробоотборных узлов, установленных на ИЗА.

Перед выездом на место контроля необходимо убедиться в возможности подключения пробоотборной магистрали лаборатории к пробоотборному узлу источника.

При работах на взрыво- и пожароопасных установках, на высоте и в условиях повышенного шума обслуживающий персонал должен пройти инструктаж и получить разрешение у инженера по технике безопасности предприятия.

Электрические и пневматические магистрали лаборатории следует подключать к магистралям предприятия только соответствующим службам предприятия кроме случаев, когда места отбора проб оборудованы специальными устройствами для обеспечения подключения к этим магистралям.

До начала работ необходимо определить ИЗА и ЗВ, подлежащие контролю, и методы контроля для каждого ЗВ и обеспечить необходимый набор реактивов для анализа инструментально-лабораторными методами.

Для повышения оперативности контроля ЗВ в контролируемых ИЗА в распоряжении обслуживающего персонала лаборатории должны быть индикаторные трубки. Их запас надо пополнять по мере необходимости.

При экстренном контроле в случае экстремально высокого загрязнения атмосферного воздуха предварительно устанавливают предполагаемые источники опасного загрязнения.

При плановом контроле очередность контроля источников загрязнения рекомендуется определять по соотношению

,                                                                                         (9.8)

где - максимальный выброс ЗВ из источника;

- максимальная разовая предельно допустимая концентрация, мг/м;

- высота источника, м.

Очередность контроля ИЗА при плановом контроле рекомендуется устанавливать в порядке убывания критерия с учетом расположения ИЗА на предприятии, готовности к проведению контроля и т.д.

При экстренном контроле в первую очередь проводят контроль предполагаемого источника опасного загрязнения индикаторными трубками (с учетом погрешности индикаторной трубки).

При плановом контроле одновременно проводят подготовительные работы, отбор проб на химический анализ и контроль индикаторными трубками.

Продолжительность контроля зависит от технологических особенностей предприятия и цикличности процесса.

Время проведения контроля выбирают по возможности в момент ожидаемого максимального выброса из ИЗА.

 9.3.5. ПОРЯДОК ПОДГОТОВКИ И ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ

Лабораторию включают в следующей последовательности:

- лабораторию подключают к трехфазной сети переменного тока напряжением 380 B и частотой 50 Гц;

- включают электронагревательные печи ПЭТ-ЧУЗ (в холодное время года);

- на пульте управления кондиционера КТА 2-0, 5Э-01 AVI переключатель сети устанавливают в положение “вкл.“ (в теплое время года);

- включают газоанализаторы, манометр И-130, колориметр КФК-2МП, УСОИ-ПВП и ЭВМ “Электроника МС 0507“;

- устанавливают текущее время и дату в УСОИ-ПВП.

В дальнейшем приборы передвижной лаборатории работают по программе в соответствии с техническим описанием и инструкцией по эксплуатации. После включения технических средств лаборатории производят следующие работы:

- отбор проб для инструментально-лабораторного анализа и измерения с применением индикаторных трубок;

- прогрев газоаналитической аппаратуры и обогреваемой магистрали транспортировки;

- калибровка и установка нуля газоанализаторов 305ФА01 и 334КПИ03;

- после завершения работ по подготовке к измерению всех технических средств лаборатории пробоотборный зонд устанавливают в пробоотборный узел газохода.

Данные инструментального измерения концентраций ЗВ фиксируются на приборах с помощью цифропечати и вводятся в ИВК автоматически. Данные измерения концентраций ЗВ с применением инструментально-лабораторных методов фиксируют вручную и вводят в ИВК через клавиатуру.

По результатам контроля ИВК ПЛКПВ печатает протокол, содержащий перечень объектов контроля, фактические значения массовых выбросов, нормативные значения ПДВ и заключение о соответствии фактических выбросов нормативным значениям.

9.3.6. МЕТОД КОНТРОЛЯ МАССОВЫХ ВЫБРОСОВ ЗВ ТЕПЛОЭНЕРГЕТИЧЕСКИМИ
АГРЕГАТАМИ БЕЗ ПРИМЕНЕНИЯ СРЕДСТВ ИЗМЕРЕНИЯ СКОРОСТИ ПОТОКА

Определение объемного расхода газовых потоков с применением пневмометрических трубок является наиболее трудоемким этапом в процессе измерения массовых выбросов ЗВ, особенно при неравномерном распределении поля скоростей потока по сечению газохода. С другой стороны, применение дорогостоящих средств автоматического измерения средней скорости потока не всегда экономически целесообразно, а применение расчетных методов может приводить к существенным погрешностям в определении массовых выбросов.

В то же время при параллельном автоматическом измерении ПЛКПВ концентраций ряда ЗВ их соотношение можно использовать для косвенного определения объемного расхода отходящих газов. Это позволяет в ряде случаев отказаться от непосредственного измерения скоростей потока и существенно сократить время контроля. Объем отходящих газов прямо пропорционален количеству серы, поступающей с топливом на сжигание (т.е. количеству топлива, сгорающего в теплоэнергетическом агрегате в единицу времени), и обратно пропорционален концентрации в отходящих газах, так как при постоянном количестве серы, поступившей на сжигание, увеличение концентрации свидетельствует об уменьшении объема отходящих газов.

Блок-схема системы для контроля массовых выбросов по указанному методу приведена на черт.9.3.

Черт.9.3. Блок-схема определения массового выброса ЗВ теплоэнергетическими агрегатами

Система использует информацию от трех каналов измерения газоанализатора, 305-ФА-01 (каналов NО, и СО 1-3). В состав системы входят блоки измерения расхода топлива 5 и задания содержания серы в топливе 6, блоки деления 4 и 7, подключенные к каналам 1 и 3, и три блока перемножения 8-10, подключенные к каналам 1-3.

Система работает следующим образом. Перед началом измерений в блоке задания содержания серы в топливе 6 устанавливают значение, соответствующее сернистости используемого топлива по паспорту (сертификату). С момента начала контроля на вход блока перемножения 9 поступают сигналы из блоков измерения расхода топлива 5 и задания содержания серы в топливе 6. Сигнал на выходе блока 9 пропорционален массовому выбросу .

Одновременно в блоке деления 4 определяется соотношение концентрации NO и по данным измерения газоанализаторами 305-ФА-01 в каналах 1 и 2. Это соотношение корректируется в блоке перемножения 8 с учетом данных о массовом выбросе серы, поступающих из блока перемножения 9.

Сигнал на выходе блока 8 пропорционален массовому выбросу NO. Аналогично определяют массовый выброс CO.

Таким образом, рассмотренный метод позволяет отказаться от трудоемкого и дорогостоящего процесса измерения объемного расхода отходящих газов за счет использования информации о концентрации в отходящих газах и общем количестве серы, поступившей с топливом на сжигание.

9.4. ОСНОВЫ МЕТОДОЛОГИИ КОНТРОЛЯ НЕОРГАНИЗОВАННЫХ ИЗА

Эксплуатация ряда объектов в горнодобывающей промышленности, промышленности строительных материалов, нефте- и газодобывающей и перерабатывающей промышленности связана с выделением ЗВ, непосредственно поступающих в атмосферу. Такими объектами являются терриконы и карьеры, буровые установки, узлы погрузки и разгрузки материалов, нефтяные резервуары, пруды-отстойники и т.п. Ввиду многообразия неорганизованных ИЗА и технических трудностей, связанных с их контролем, методология контроля неорганизованных ИЗА в настоящее время разработана недостаточно.

В то же время существует ряд принципиальных подходов к контролю неорганизованных ИЗА, связанных с применением расчетных и инструментальных методов контроля [26].

В настоящем пункте приведены основные методы контроля неорганизованных ИЗА на примере нефтеперерабатывающей промышленности: расчетные (для определения количества ЗВ, поступающих из резервуаров и технологического оборудования), инструментально-лабораторные (для определения выбросов из цистерн и открытых площадных ИЗА) и инструментальные (для контроля открытых площадных ИЗА).

9.4.1. РАСЧЕТ КОЛИЧЕСТВА ЗВ, ВЫДЕЛЯЮЩИХСЯ
ПРИ ЭКСПЛУАТАЦИИ РЕЗЕРВУАРОВ НЕФТЕПРОДУКТОВ

Количество углеводородов, поступающих в атмосферу от испарения нефтепродуктов при приеме, хранении и отпуске их из резервуаров [26], определяют следующим образом.

Максимальный выброс определяют по соотношению

,                                                                                   (9.9)

где - максимальный выброс, г/с;

- объем газовоздушной смеси, выбрасываемой из резервуара в единицу времени в течение закачки, м/с;

- максимальная концентрация углеводородов в резервуаре, г/м.

Количество углеводородов, выбрасываемых в атмосферу за год () из одного резервуара или их группы, объединенной в один источник, определяют, суммируя потери нефтепродуктов в весенне-летний и осенне-зимний периоды, рассчитанные по “Нормам естественной убыли нефтепродуктов при приеме, хранении, отпуске и транспортировании“, утвержденных постановлением Госплана СССР N 40 от 26.03.86 г.:

,                                                                                                   (9.10)


где вл и оз - весна, лето, осень и зима.

Для нефтепродуктов 1-й и 2-й групп выброс за каждый период года определяют по соотношению

,                                                                             (9.11)


где и - нормы естественной убыли нефтепродуктов соответственно при приеме в резервуары и хранении до 1 мес для соответствующих зон и периода года, кг/т;

- норма естественной убыли нефтепродуктов при хранении свыше 1 мес. для соответствующих зон и периода года, кг/(м·мес.);

           - продолжительность хранения за вычетом одного месяца, мес.;

- количество нефтепродукта, принятого в резервуар за соответствующий период года, т.

Если продолжительность хранения нефтепродукта менее 1 мес., норму не учитывают.

9.4.2. РАСЧЕТ КОЛИЧЕСТВА ЗВ, ПОСТУПАЮЩИХ В АТМОСФЕРУ ИЗ
ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ

В атмосферу ЗВ поступают через неплотности в запорно-регулирующей и предохранительной арматуре, в сальниках вращающихся видов насосов, компрессоров, мешалок и т.д., во время загрузки и выгрузки материалов, при проливах, во время ремонта оборудования и др.

Поэтому в связи с многочисленностью этого типа неорганизованных источников в данном пункте приведен укрупненный расчет выбросов паров и газов из основного оборудования технологических установок [20].

Выбросы паров и газов, выделяющихся из аппаратов колонн, реакторов, емкостей и др., в которых преобладает по объему парогазовая среда, рассчитывают по соотношению

,                                                                         (9.12)

где - выброс, кг/ч;

           - абсолютное давление в аппарате, кг/см;

           - объем аппарата, м;

- средняя молекулярная масса паров и газов;

- средняя температура в аппарате, К.

Если в аппарате преобладает жидкая среда, то потери в атмосферу рассчитывают по соотношению

,                                                                                   (9.13)


где - коэффициент, принимаемый в зависимости от средней температуры кипения жидкости (нефтепродукта) и средней температуры в аппарате из табличных данных.

Вредные составляющие (углеводороды, сероводород и др.) в неорганизованных выбросах технологических установок рассчитывают по соотношению

,                                                               (9.14)

где - выброс ЗВ, кг/ч;

, и - массовое содержание ЗВ соответственно в сырье, реагентах и в отдельных продуктах технологической установки, %;

- количество перерабатываемого сырья, кг/ч;

- количество получаемого отдельного вида продукции, кг/час;

- массовое отношение веществ, циркулирующих в аппаратах технологических установок.

9.4.3 МЕТОДОЛОГИЯ ОПРЕДЕЛЕНИЯ СУММАРНОЙ КОНЦЕНТРАЦИИ УГЛЕВОДОРОДОВ
МЕТОДОМ ГАЗОЖИДКОСТНОЙ ХРОМАТОГРАФИИ

Для определения концентрации ЗВ в выбросах из железнодорожных и автомобильных цистерн пробу отбирают во время налива нефтепродукта [20].

Для определения суммарной концентрации алифатических и ароматических углеводородов в промышленных выбросах с диапазоном концентраций 50-30000 мг/м используют газохроматографические методы, основанные на общем детектировании углеводородов пламенно-ионизационным детектором (ПИД).

Пробу исследуемого воздуха вводят без предварительного концентрирования в колонку, заполненную инертным носителем. Количественный анализ основан на том, что чувствительность ПИД пропорциональна числу атомов углерода в молекуле углеводорода.

Суммарную концентрацию углеводородов в газовых выбросах определяют по градуировочным зависимостям высот пиков (в миллиметрах) от концентрации гексана (в миллиграммах в 1 м) в пересчете на углерод методом абсолютной калибровки. Градуировочную зависимость строят по МИ 137-77 “Методике по нормированию метрологических характеристик градуировки, поверке хроматографических приборов универсального назначения и суммы точности результатов хроматографических измерений“.

Через 2-3 ч приготовленную градуировочную смесь анализируют. Правильность градуировочной зависимости проверяют 1 раз в месяц по МИ 137-77.

Пробу исследуемого воздуха объемом 1 мл вводят в хроматограф шприцем, предварительно промыв шприц исследуемым воздухом. Сигнал ПИД на выходит на хроматограмме одним узким пиком с временем удерживания 13 с. Каждую пробу анализируют 5 раз. Измеряют высоту пиков и за результат принимают среднее арифметическое значение.

Концентрацию гексана или бензола (в миллиграммах в 1 м) в градуировочной смеси в пересчете на углерод вычисляют по соотношению

,                                                                                  (9.15)

где - навеска гексана или бензола, мг;

- число атомов углерода в молекуле гексана или бензола;

- объем бутыли, л;

- относительная молекулярная масса смеси гексана и бензола.

Суммарную концентрацию углеводородов в пересчете на углерод в пробе анализируемого воздуха при нормальных условиях определяют по градуировочной зависимости высот пиков от концентрации гексана или бензола в градуировочной смеси.

Суммарную концентрацию углеводородов в выбросах в пересчете на углерод рассчитывают по соотношению

,                                                                                            (9.16)


где - суммарная концентрация углеводородов, определенная по градуировочному графику, мг/м;

- коэффициент, рассчитанный по соотношению

,                                                                         (9.17)

где - атмосферное давление, мм рт. ст.;

- температура в месте отбора пробы, °С.

Погрешности измерений суммарной концентрации углеводородов оценены при числе измерений и принятой доверительной вероятности, равной 0,95, в диапазоне измерений 50-30000 мг/м, доверительные границы случайной погрешности ±5%. Относительная суммарная погрешность измерения ±10%.

9.4.4 МЕТОД ОЦЕНКИ ВЫБРОСОВ УГЛЕВОДОРОДОВ ИЗ ОТКРЫТЫХ ПЛОЩАДНЫХ ИЗА

Метод основан на определении скорости ветра и концентраций ЗВ в газовоздушном потоке по периметру ИЗА с наветренной и подветренной сторон [20].

Метод предусматривает проведение следующих измерений:

  1. 1) скоростей и температур газовоздушного потока,

  2. 2) барометрического давления,

  3. 3) концентраций углеводородов по периметру ИЗА в точках наветренной и подветренной сторон;

  4. 4) геометрических размеров объекта.

Скорость измеряют анемометром типа АСО-3 по ГОСТ 6376-64 при скорости 1-4 м/с и анемометром типа MC- 13 при скорости 4 м/с и больше.

Температуру измеряют ртутным термометром по ГОСТу 18646-68.

Давление измеряют мембранным манометром по ТУ 23696-79.

Концентрацию углеводородов в пробе измеряют газоанализатором на (без метана) с пределом измерения до 500 ppm.

До начала измерения выбирают проекцию условной наветренной плоскости, проходящей через ближний с наветренной стороны угол источника перпендикулярно направлению ветра (черт.9.4), подготавливают приборы в соответствии с требованиями НТД и выписывают данные о размерах объекта.

Черт.9.4. Расположение условных плоскостей:

1-12 - точки плоскостей

Измеряют температуру, атмосферное давление и скорость газовоздушного потока на высоте 3 м.

Рассчитывают значения , и - расстояния от каждой -й точки до условной наветренной плоскости.

Проводят в пяти-шести точках контроль с наветренной и подветренной сторон источника. Измеряют концентрации во всех выбранных точках.

Массовый выброс рассчитывают по соотношению

,                                           (9.18)

где - массовый выброс, г/с;

- скорость ветра на высоте 3 м, м/с;

- длина подветренной условной плоскости;

- атмосферное давление, мм рт. ст.;

- температура воздуха, °С;

и - концентрация ЗВ в -й точке с подветренной и наветренной сторон соответственно, мг/м;

и - число точек с подветренной и наветренной сторон соответственно;

- опытный коэффициент, зависящий от .

Данные нескольких замеров в одной точке осредняют.

9.4.5. МЕТОД ИНСТРУМЕНТАЛЬНОГО КОНТРОЛЯ ПЛОСКИХ НАЗЕМНЫХ ИЗА

Данный метод основан на отборе и анализе проб ЗВ, поступающих в атмосферу от очистных сооружений: нефтеловушек, бассейнов, нефтеотделителей и других плоских наземных ИЗА*.

_______________

* Разработан В.С.Матвеевым и В.Б.Миляевым в ГГО им. А.И.Воейкова.

Система контроля плоских наземных ИЗА (черт.9.5) состоит из пробоотборников 5, входы которых размещены по периметру ИЗА; переключающих устройств 6 и 8; электромагнитных клапанов 7 и 9 и включенных параллельно на общий коллектор автоматических преобразователей концентраций 12. Необходимые для контроля точки отбора выбирают с помощью блока выбора точек отбора 2, состоящего из многоуровневого компаратора 3 и преобразователя кодов 4.

Черт.9.5. Блок-схема системы отбора и анализа проб воздуха от плоских наземных ИЗА

Вход блока 2 соединен с выходом автоматического измерителя направления ветра 1. Блок 2 имеет два кодовых выхода, передающих код требуемой точки отбора с подветренной и наветренной сторон источника на переключающие устройства 6 и 8 соответственно. Стабилизирующее устройство 13, состоящее из источника опорных импульсов 14 и делителя частоты 15, соединено с управляющими входами клапанов 7 и 9, установленных на выходах устройств 6 и 8. Один из выходов клапанов 7 и 9 связан с коллектором параллельно включенных автоматических преобразователей концентрации 12, а другой - с входом побудителя расхода газа 18. Выходы автоматических преобразователей концентрации 12 можно подключать к входам вычислительного устройства 10, связанного с измерителем скорости ветра 11.

Система работает следующим образом.

С выхода автоматического измерителя направления ветра 1 поступает электрический сигнал, пропорциональный углу между направлением ветра и направлением на север. Этот сигнал поступает в блок выбора точек отбора 2, где сравнивается с набором установок (заданных напряжений) во многоуровневом компараторе 3. При этом выбирается поддиапазон, верхняя граница (уставка) которого ограничивает сигнал сверху, а нижняя - снизу. После выбора поддиапазона блоки 6 и 8 подключают соответствующие пробоотборники с наветренной и подветренной сторон ИЗА.

Сигналы от автоматических преобразователей концентраций 12 поступают в вычислительное устройство 10, где по концентрациям ЗВ с наветренной и подветренной сторон ИЗА, по информации, поступающей от автоматического измерителя скорости ветра 11, и по размерам ИЗА, введенным в память, вычисляется массовый выброс от ИЗА по соотношению, аналогичному (9.18).

 10. КОНТРОЛЬ ГАЗООЧИСТНОГО ОБОРУДОВАНИЯ

10.1. ОСНОВНЫЕ СВЕДЕНИЯ О ТИПАХ ГАЗООЧИСТНОГО ОБОРУДОВАНИЯ (ГОО),
ПРИМЕНЯЕМОГО В ОТЕЧЕСТВЕННОЙ ПРОМЫШЛЕННОСТИ

Отечественная промышленность серийно выпускает широкую номенклатуру различных типов газоочистных установок (ГОУ) [1, 4, 21] (черт.10.1).

Черт.10.1. Типы газоочистного оборудования

10.1.1. ИНЕРЦИОННЫЕ ПЫЛЕУЛОВИТЕЛИ

Простейшим методом удаления твердых частиц из газопылевого потока является их осаждение под действием силы тяжести. На этом принципе работают все аппараты сухого инерционного обеспыливания газов: пылеосадительные камеры, жалюзийные аппараты, циклоны различных модификаций, дымососы-пылеуловители и др. Из всей разновидности инерционных аппаратов наиболее распространены циклоны. Применение пылеосадительных камер и простейших по конструкции пылеуловителей инерционного типа оправдано лишь для предварительной очистки газов от частиц размером более 100 мкм.

10.1.1.1. Пылевые камеры. Пылевые камеры относятся к простейшим устройствам для улавливания крупных частиц сырья или пыли. Они действуют по принципу осаждения частиц при медленном движении пылегазового потока через рабочую камеру, поэтому основными размерами камеры являются ее высота и длина. Типичными представителями инерционных пылеуловителей являются “пылевые мешки“, которые широко применяют в металлургии. Характерной особенностью этого аппарата является возможность его использования при высоких рабочих температурах и агрессивных средах.

10.1.1.2. Циклоны. Циклоны являются наиболее распространенным типом механического пылеуловителя. Циклоны-пылеуловители имеют ряд преимуществ перед другими аппаратами: отсутствие движущихся частей, надежная работа при температуре до 500 °С без конструктивных изменений, возможность улавливания абразивных пылей и т.д.

К недостаткам можно отнести большое гидравлическое сопротивление, достигающее 1250-1500 Па, и малую эффективность при улавливании частиц размером менее 5 мкм.

10.1.1.3. Вихревые пылеуловители. Основным отличием вихревых пылеуловителей от циклонов является наличие вспомогательного закручивающего газового потока. Аналогично циклонам эффективность вихревых аппаратов с увеличением их диаметра снижается. По сравнению с противоточными циклонами вихревые пылеуловители имеют следующие преимущества:

- более высокую степень очистки высокодисперсных пылей;

- отсутствие абразивного износа активных частей аппарата;

- возможность обеспыливания газов с более высокой температурой за счет использования вторичного воздуха.

10.1.1.4. Роторные пылеуловители. Роторные пылеуловители можно разбить на несколько групп. В первой группе (наиболее многочисленной) запыленный поток поступает в центральную часть колеса, вращающегося в спиралеобразном кожухе. Во второй улавливаемые частицы перемещаются в направлении, обратном движению газов. Из динамических аппаратов наиболее распространен дымосос-пылеуловитель, предназначенный для улавливания частиц пыли со средним размером 15 мкм. Этот аппарат применяют для очистки дымовых газов малых котелен, в литейных производствах и на асфальтобетонных заводах. Его можно использовать в качестве первой ступени очистки перед мокрыми электрофильтрами и тканевыми фильтрами.

 10.1.2. ФИЛЬТРЫ

В зависимости от назначения фильтровальные аппараты для улавливания твердых аэрозолей принято делить на фильтры для очистки атмосферного воздуха и фильтры для очистки технологических газов и аспирационного воздуха. В фильтрах для технологических газов и аспирационного воздуха можно очищать агрессивные, взрывоопасные и высокотемпературные газы с концентрацией пыли 60 г/м и более. Иногда фильтровальные аппараты используют не только для улавливания пылей, но и для химической очистки газов.

Общепромышленные фильтры предназначены для улавливания нетоксичных и невзрывоопасных пылей при температуре газов не более 140 °С. В зависимости от типа фильтровальных перегородок аппараты принято делить на фильтры с гибкими и жесткими фильтровальными перегородками и насыпным слоем.

10.1.2.1. Фильтры с гибкими перегородками. Конструкции серийно изготовляемых фильтров с гибкими перегородками в зависимости от основного конструктивного признака - устройства регенерации - подразделяются на следующие основные группы фильтров:

- с регенерацией механическим воздействием;

- с механическим встряхиванием в сочетании с обратной посекционной продувкой;

- с обратной посекционной продувкой;

- с импульсной продувкой;

- с поэлементной струйной продувкой.

10.1.2.2. Фильтры с жесткими перегородками. Фильтры с жесткими перегородками предназначены для тонкой очистки газов при высоких температуре и давлении, для фильтрования жидкостей и газов в химической и фармацевтической промышленностях, очистки сжатого воздуха от масла и твердых частиц в компрессорных установках. Промышленность серийно выпускает рукавные фильтры, в которых используют фильтровальные элементы металлических сеток. Они предназначены для улавливания химических реактивов, особо чистых химических веществ и других ценных продуктов из газов, отходящих от технологических установок распылительного типа, печей кипящего слоя в химической, нефтехимической и других отраслях промышленности.

10.1.2.3. Фильтры с насыщенным слоем. Фильтры с насыщенными слоями делятся на фильтры с неподвижным и движущимся насыщенным слоем.

В фильтрах с неподвижным насыщенным слоем достигается наиболее высокая очистка.

В числе фильтров с движущимся насыпным слоем наиболее распространены аппараты с периодическим движением слоя, обеспечивающие относительно высокую очистку. Концентрация пыли в очищаемых газах составляет 5-9 г/м, а на выходе из фильтра 60-90 мг/м. В последние годы подобные аппараты используют для очистки газов в небольших котельных установках, работающих на угле.

10.1.3. ЭЛЕКТРОФИЛЬТРЫ

Электрофильтры являются универсальными аппаратами для очистки промышленных газов от твердых и жидких частиц. К преимуществам электрофильтров относятся: высокая очистка, достигающая 99%; низкие энергетические затраты на улавливание частиц; возможность улавливания частиц размером 100-0,1 мкм и менее, при этом концентрация взвешенных частиц в газах может колебаться от долей грамма до 50 г/м и более, а их температура может превышать 500 °С.

Электрофильтры широко применяют почти во всех отраслях народного хозяйства: теплоэнергетике, черной и цветной металлургии, химии и нефтехимии, в строительной индустрии, при производстве удобрений и утилизации бытовых отходов, в атомной промышленности и др. В СССР в электрофильтрах очищается более 50% общего объема отходящих газов.

Электрофильтры не применяют, если очищаемый газ является взрывоопасной смесью, так как при работе электрофильтра неизбежно возникают искровые разряды.

По конструкции осадительных электродов разделяют пластинчатые и трубчатые электрофильтры. По виду улавливаемых частиц и способу их удаления с электродов разделяют сухие и мокрые электрофильтры.

10.1.4. МОКРЫЕ ПЫЛЕУЛОВИТЕЛИ

Целесообразность использования мокрых аппаратов газоочистки обычно определяется не только задачами очистки газов от пыли, но и необходимостью одновременного охлаждения и осушки (или увлажнения) газов, улавливании туманов и брызг, абсорбции газовых примесей и др. В мокрых пылеуловителях в качестве орошающей жидкости чаще всего применяют воду; при совместном пылеулавливании и химической очистке газов выбор орошающей жидкости (абсорбента) обусловливается процессом абсорбции.

Мокрые пылеуловители разделяют на группы в зависимости от поверхности контакта или по способу действия.

10.1.4.1. Полые газопромыватели. Наиболее распространенным аппаратом этого класса является полый форсуночный скруббер. Он широко используется как для очистки газов от достаточно крупных частиц пыли, так и для охлаждения газов. В различных системах пылеулавливания аппарат обеспечивает подготовку (кондиционирование) газов. Степень очистки в полом форсуночном скруббере достигает 99% при улавливании частиц размером более 10 мкм и резко снижается при размере менее 5 мкм.

10.1.4.2. Насадочные газопромыватели. Насадочные газопромыватели следует применять только при улавливании хорошо смачиваемой пыли, особенно когда процессы улавливания пыли сопровождаются охлаждением или абсорбцией газов.

10.1.4.3. Газопромыватели ударного действия. Наиболее простой по конструкции пылеуловитель ударно-инерционного действия представляет собой вертикальную колонну, в нижней части которой находится слой жидкости. Аппараты ударно-инерционного действия следует устанавливать для очистки холодных или предварительно охлажденных газов.

10.1.4.4. Газопромыватели центробежного действия. Скрубберные газопромыватели центробежного действия по своей конструкции делятся на два типа: в первом вращательное движение пылегазовому потоку придается за счет тангенциального подвода потока, а во втором закручивателем служит центральное лопастное устройство.

В СССР наиболее распространены центробежные скрубберы с тангенциальным подводом газопылевого потока и пленочным орошением, создаваемым форсунками. Циклон с водяной пленкой (ЦВП) является типичным представителем этого типа пылеуловителей и предназначен для очистки запыленного вентиляционного воздуха от любых видов нецементирующейся пыли.

10.1.4.5. Скоростные газопромыватели. Скрубберы Вентури являются эффективными аппаратами мокрого пылеулавливания. Разработан большой ряд конструкций скрубберов Вентури:

  1. 1) с центральным (форсуночным) орошением,

  2. 2) с периферийным и пленочным орошением,

  3. 3) с подводом жидкости за счет энергии газового потока (бесфорсуночные скрубберы Вентури).

10.2. МЕТОДОЛОГИЯ КОНТРОЛЯ ГАЗООЧИСТНОГО ОБОРУДОВАНИЯ

Основной величиной, характеризующей работу газоочистных установок (ГОУ) в промышленных условиях, является степень очистки воздуха, которую определяют по одному из следующих соотношений [3]:

,                                               (10.1)


где - массы химического вещества или частиц пыли, содержащихся в газе до поступления в аппарат, уловленных в аппарате и содержащихся в очищенном воздухе после выхода из аппарата соответственно, кг;

и - средние концентрации вещества или частиц пыли в воздухе на входе в аппарат и на выходе из него соответственно, г/м;

и - объемные расходы воздуха, поступившего в аппарат и вышедшего из него, приведенные к нормальным условиям, м/ч.

Иногда для определения эффективности работы аппаратов применяют упрощенное соотношение:

,                                                                           (10.2)


справедливое только при одинаковых объемных расходах воздуха на входе и выходе из аппарата.

Все значения величин, входящих в соотношения (10.1) и (10.2), следует определять одновременно.

Для контроля ГОУ необходимо знать характеристики пылегазовых потоков до и после прохождения через каждый аппарат в отдельности и всей газоочистки в целом.

Характеристика пылегазовых потоков включает в себя следующие показатели:

- количество газа на входе и выходе из ГОУ, м/ч;

- температура газа на в ходе и выходе, °С;

- влажность газа до и после очистки, г/м;

- давление или разрежение газов по всему газовому тракту, Па;

- запыленность газа на входе и выходе из ГОУ, г/м;

- дисперсный состав пыли на входе и выходе из ГОУ.

Контроль ГОО с использованием инструментальных методов в зависимости от типа газоанализаторов осуществляют в двух вариантах:

  1. 1) с применением газоанализаторов промышленных выбросов;

  2. 2) с применением газоанализаторов микроконцентраций.

10.2.1. КОНТРОЛЬ ГОУ С ПРИМЕНЕНИЕМ ГАЗОАНАЛИЗАТОРОВ
ПРОМЫШЛЕННЫХ ВЫБРОСОВ

Газ отбирают из газохода в точках до и после места расположения ГОУ (черт.10.2). На входе ГОУ в газоходе помещают пробоотборный зонд с устройством динамического разбавления газовой пробы. Газовая проба очищается от пыли фильтрующим элементом, помещенным в защитный стальной кожух. При фильтрации пыль задерживается пористой перегородкой фильтрующего элемента, а газовая проба проходит через поры фильтра. Использование металлокерамического фильтра позволяет применять его для отбора пробы из газовых потоков практически любой запыленности с температурой до 400 °С и влажностью до 100%. На выходе ГОУ в газоход помещают пробоотборный зонд без УДР, так как концентрация ЗВ соответствует диапазонам измерения газоанализатора. Для фильтрации используют зонды с внутренней или внешней фильтрацией. При внешней фильтрации для предотвращения выпадения конденсата используют подогревательную манжету фильтра. Газовую магистраль доставки пробы к устройству пробоподготовки надо термостатировать.

Черт.10.2. Схема контроля эффективности ГОУ с использованием газоанализаторов промышленных выбросов:
1 - газоход, 2 - ГОУ, 3 - пробоотборный зонд, 4 - газоанализатор промышленных выбросов (а) или микроконцентраций (б)

10.2.2. КОНТРОЛЬ ГОУ С ПРИМЕНЕНИЕМ ГАЗОАНАЛИЗАТОРОВ МИКРОКОНЦЕНТРАЦИЙ

При контроле ГОУ с применением газоанализаторов микроконцентраций используют пробоотборные зонды с устройством динамического разбавления пробы (см. черт.10.2), где - коэффициент разбавления пробы. Пробы газа отбирают из газохода перед местом установки ГОО и после него. Каждую пробу разбавляют чистым воздухом в заданном соотношении (с коэффициентом разбавления или ).

Степень очистки газа определяют из соотношений:

,

(10.3)

     
,        ,

где - коэффициент разбавления пробы;

и - концентрации ЗВ, измеренные с помощью газоанализатора на выходе и входе газоочистного оборудования соответственно;

и - концентрации ЗВ в разбавленной пробе, измеренные с помощью газоанализатора соответственно на входе и выходе газоочистного оборудования.

Соотношение (10.3) справедливо при отсутствии подсосов воздуха в ГОУ.

10.2.3. КОНТРОЛЬ ГОУ С ПЕРЕКЛЮЧЕНИЕМ КОЭФФИЦИЕНТА РАЗБАВЛЕНИЯ

Разбавление газа атмосферным воздухом приводит к появлению в анализируемой смеси новых ЗВ, отсутствующих в газовой пробе, взятой из газохода. Это связано с наличием в воздухе рабочей зоны всех примесей, выбрасываемых предприятием, а не только тех, которые имеются в контролируемых ИЗА. При этом наличие дополнительных примесей увеличивает погрешность определения основного ЗВ. Для повышения точности контроля степени очистки газа от ЗВ используют следующий способ. Пробу газа, отбираемую из газохода до газоочистного оборудования, разбавляют газом, отбираемым из газохода после места установки ГОУ, причем концентрацию разбавленного газа измеряют дважды через заданный промежуток времени с разными коэффициентами разбавления. При этом гарантируется, что газовая проба не будет содержать новых ЗВ, отсутствующих в исходной газовой пробе и вносящих дополнительную погрешность при определении концентрации*.

___________________

* Способ контроля степени очистки газа предложен В.С.Матвеевым и С.В.Тимаковым.

Устройство для контроля степени очистки газа от ЗВ изображено на черт.10.3. Устройство состоит из двух пробоотборных узлов 2 и 13 с зондами, установленных в газоходе 1. Первый пробоотборный узел 2 с зондом установлен в газоходе перед ГОУ. Магистраль транспортировки пробы 3 соединяет пробоотборный узел 2 с переключающим пневмоклапаном 4. Один из выходов пневмоклапана 4 соединен с диафрагмой 5, а второй - с диафрагмой 6, имеющей меньший, чем диафрагма 5, диаметр проходного отверстия. Выходы диафрагм 5 и 6 подключены к первому входу 9 эжектора 11. Второй вход 10 эжектора через побудитель расхода 15 и магистраль транспортировки пробы 14 связан с пробоотборным узлом 13, ycтaновленным после ГОУ. Выход эжектора через магистраль транспортировки пробы 7 соединен с газоанализатором 8. Эжектор имеет выход сброса 12, предназначенный для сброса излишка газа, не поступающего на анализ в газоанализатор 8.

Черт.10.3. Устройство для контроля эффективности ГОУ

От устройства управления (на схеме не показано) подается команда на переключающий пневмоклапан, по которой пробоотборный узел 2 подключается к диафрагме 5, и запускается побудитель расхода 15. Проба газа с малой концентрацией ЗВ, отбираемая через второй пробоотборный узел 13, через магистраль транспортировки пробы 14 и побудитель расхода 15 поступает на вход 10 эжектора 11. В камере эжектора создается разрежение, что приводит к поступлению потока газа с большой концентрацией ЗВ из первого пробоотборного узла 2 через магистраль транспортировки пробы 3 и диафрагму 5 на вход 9 эжектора 11. В камере эжектора смешиваются потоки газа с большой и малой концентрацией ЗВ и образуется смесь с концентрацией, определяемой коэффициентом разбавления, т.е. проходным отверстием диафрагмы 5. Полученная смесь поступает через магистраль транспортировки пробы 7 в газоанализатор 8, где определяется концентрация газовой смеси, соответствующая коэффициенту разбавления диафрагмы 5. Через заданное время, необходимое для измерения концентрации в установившемся режиме (20 мин), устройство управления переводит переключающий пневмоклапан в положение, соответствующее подключению диафрагмы 6 к пробоотборному узлу 2. При этом увеличивается коэффициент разбавления и изменяется концентрация разбавленной газовой пробы в эжекторе 11 и на входе в газоанализатор 8. Газоанализатор 8 измеряет новую концентрацию разбавленной газовой смеси, полученной в эжекторе.

Степень очистки газа рассчитывают по известным коэффициентам разбавления и и соответствующим этим коэффициентам концентрациям ЗB, измеренным газоанализатором по соотношению

,                                                            (10.4)


где и - коэффициенты разбавления; и - концентрации ЗВ, измеренные газоанализатором, для значения коэффициента разбавления и .

Эффективность работы ГОУ во многом определяется количеством подсасываемого воздуха в газоотводящем тракте и в самих газоочистных аппаратах. Большое количество подсасываемого воздуха по газоходу приводит к снижению эффективности улавливания и отвода газов от технологических агрегатов и повышению нагрузки на газоочистной аппарат, а разбавление газов, содержащих горючие компоненты, может создавать условия для образования взрывоопасных концентраций. Подсос воздуха в самом аппарате, особенно при сухих способах очистки, как правило, приводит ко вторичному пылеуносу и снижению степени очистки газов, а также увеличивает энергозатраты на очистку газа. Для учета подсоса газа на участке выбирают две замерные точки в его начале и конце. В этих точках анализируют концентрацию газа и по ее изменению определяют количество воздуха, подсасываемого в газоход на данном участке.

10.3. ОСНОВНЫЕ МЕТОДЫ СНИЖЕНИЯ ВЫБРОСОВ

Проблему уменьшения поступления ЗВ в атмосферу из стационарных источников решают двумя основными способами: путем использования технологических методов снижения и установкой пылегазоочистного оборудования. Применение того или иного метода подавления зависит от вида ЗВ, выброс которого необходимо уменьшить, технологического процесса и технических характеристик ИЗА.

10.3.1. МЕТОДЫ СНИЖЕНИЯ ВЫБРОСОВ АЭРОЗОЛЬНЫХ ЧАСТИЦ

При отводе аэрозольных частиц через дымовые трубы (организованные источники) единственным технологическим способом уменьшения их выделения является использование первичного сырья и топлива с более низким содержанием минеральных веществ. Примером может служить переход на предприятиях теплоэнергетики на жидкое и газообразное топливо или твердое топливо с более низкой зольностью,

Для организованных ИЗА основным методом подавления выбросов аэрозолей является установка пылеочистного оборудования. Выбор того или иного оборудования для установки его на источник зависит от термодинамических параметров пылегазового потока в дымовых трубах.

В то же время каждый из способов очистки имеет свои достоинства и недостатки. Так, мокрые скрубберы создают высокую степень очистки и имеют простую конструкцию. К недостаткам такого типа оборудования относятся унос капельной жидкости и уменьшение температуры отходящих газов, что приводит к необходимости установки дополнительного оборудования по улавливанию уноса газового потока и его подогреву.

Использование улавливания с помощью фильтров ограничивается температурой очищаемого пылегазового потока, при которой разрушается фильтровая ткань, и необходимостью удаления с ткани пылевых частиц.

Электрофильтры эффективно работают только для аэрозолей с незначительным удельным электрическим сопротивлением.

Для высокой эффективности улавливания целесообразно применять гибридные системы очистки. Например, циклоны (механические сепараторы) могут быть первой ступенью очистки с последующим использованием электрофильтров и скрубберов Вентури.

Выбросы аэрозольных частиц от неорганизованных и площадных источников подавляются технологическими методами.

Уменьшают выбросы от неорганизованных источников путем герметизации технологического оборудования, установки вытяжных колпаков, водяных и воздушных завес в местах выделения аэрозолей и организации химической стабилизации складов сырья и топлива.

Пыление площадных источников подавляют путем увлажнения водой с добавками, улучшающими смачивание.

 10.3.2. МЕТОДЫ СНИЖЕНИЯ ВЫБРОСОВ

Технологическими методами уменьшения выбросов являются переход на сырье и топливо с более низким содержанием серы и использование на предприятиях теплоэнергетики промышленного и бытового назначения котельного оборудования с кипящим слоем.

Из-за ухудшающейся в последнее время структуры потребления топлива и использования его высокосернистых видов основным методом подавления выбросов считают применение установок по десульфуризации отходящих газов.

Известны аммиачный, аммиачно-циклический доломитовый методы очистки и метод, основанный на окислении на ванадиевом катализаторе. За рубежом широко используют метод подавления , при котором дымовые газы орошаются известковым молоком в скрубберах. Однако в СССР, кроме отдельных опытно-промышленных установок, серийного оборудования по очистке отходящих газов от не выпускают. В этих условиях наиболее реальна замена высокосернистого топлива на низкосернистое.

10.3.3. СНИЖЕНИЕ ВЫБРОСОВ

Основными стационарными источниками поступления в атмосферу являются процессы сжигания органического топлива и производство .

В источниках, сжигающих органическое топливо, наиболее эффективны технологические методы уменьшения выбросов . К ним относятся рециркуляция дымовых газов, применение специальных режимов горения и горелочных устройств и др. При правильной организации рециркуляции дымовых газов степень подавления может достигать 30-40%. Однако эффективность такого метода резко уменьшается с уменьшением номинальной мощности котельного оборудования.

К технологическим методам относятся стадийное или нестехиометрическое сжигание топлива. Данный метод наиболее предпочтителен для котлов малой и средней производительности пара до 200 т/ч, при работе котлоагрегата с минимально допустимыми избытками воздуха.

Эффективное подавление наблюдается и при использовании специальных горелочных устройств с низким образованием , таких как низкотемпературные вихревые горелки и др.

При производстве в химической промышленности подавляют за счет улучшения конструкции и правильной эксплуатации технологического оборудования.

В настоящее время и в СССР, и за рубежом стали активно разрабатывать методы денитрификации дымовых газов.

В первую очередь к ним относится введение в дымовые газы, содержащие NO. Этот метод наиболее эффективен при температуре дымовых газов 970±50 °С.

Недостатком данного метода является наличие в выбросах . При использовании сернистых видов топлива газоходы могут забиваться бисульфатом аммония.

Другой метод очистки основан на селективном каталитическом восстановлении до аммиаком в присутствии катализатора (обычно или ).

К перспективным методам очистки в настоящее время относят метод облучения аммиачно-газовой среды электронным пучком.

10.3.4. СНИЖЕНИЕ ВЫБРОСОВ СО

Наибольшее количество СО выбрасывается в атмосферу в литейном и химическом производстве, при производстве сажи и малеинового ангидрида. Основным методом подавления выбросов СО является организация его дожигания.

10.3.5. СНИЖЕНИЕ ВЫБРОСОВ УГЛЕВОДОРОДОВ

Основными загрязнителями атмосферы углеводородами являются металлургическая, нефтехимическая и химическая промышленности.

Организованные источники выбросов углеводородов в основном оснащаются системами мокрой очистки в скрубберах или системах дожигания, неорганизованные - системами герметизации и другими технологическими методами уменьшения выбросов.

 11. ПРИНЯТИЕ РЕШЕНИЯ ПО РЕЗУЛЬТАТАМ КОНТРОЛЯ ИЗА

11.1. ОЦЕНКА СОБЛЮДЕНИЯ НОРМАТИВОВ ПРИ КОНТРОЛЕ
ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

Основным методом оценки соблюдения нормативов при контроле выбросов промышленных предприятий является сравнение фактических выбросов ИЗА, полученных с помощью непосредственных измерений или расчетных методов с нормативами предельно допустимых выбросов. Значения массовых выбросов, полученные с помощью измерений, сравнивают с контрольными значениями ПДВ в граммах в секунду. Значения массовых выбросов, полученные с помощью расчетных методов, сравнивают либо с контрольными значениями ПДВ в граммах в секунду, либо с ПДВ в тоннах в год в зависимости от размерности этой величины в расчетной методике. Когда определить массовый выброс для источника выбросов невозможно по конструктивным или технологическим условиям, можно определять массовые выбросы для всех источников выделения, относящихся к ИЗА, с последующим суммированием полученных значений по всем источникам выделения.

Нарушение нормативных значений выбросов фиксируют, учитывая погрешность метода определения валовых выбросов, т.е. при выполнении условия:

,                                                                          (11.1)

где - значение массового выброса, определенное с помощью непосредственных измерений или расчетных методов;

- нормативное значение выброса;

- погрешность метода определения массового выброса.

Для принятия решения о применении санкций к предприятию, имеющему сверхнормативные выбросы, можно использовать информацию о загрязнении атмосферы, полученную при подфакельных и маршрутных наблюдениях или от стационарных постов контроля атмосферного воздуха. Эту информацию используют при принятии решения, если можно достоверно установить влияние промышленного предприятия на состояние воздуха (например, для отдельно стоящих предприятий или для предприятий, выбрасывающих специфические ЗВ, отсутствующие в ИЗА других предприятий на контролируемой территории).

Порядок использования информации о загрязнении воздуха для принятия решения по результатам контроля приведен в п.11.2.

11.2. КРИТЕРИИ ПРИНЯТИЯ РЕШЕНИЙ ПРИ КОНТРОЛЕ ВЫБРОСОВ ПРЕДПРИЯТИЙ

По результатам контроля промышленных предприятий инспектирующие органы могут принять решения об ограничении, приостановке или прекращении эксплуатации отдельных установок, цехов, производств, а также о применении санкций к должностным лицам и руководящим работникам предприятий (депремирование, меры административного воздействия, уголовная ответственность).

Депремирование должностных лиц и руководящих работников предприятия осуществляют по постановлению Госкомтруда СССР и Президиума ВЦСПС “О порядке лишения премий за невыполнение планов и мероприятий по охране природы и за несоблюдение норм и правил использования природных ресурсов“ от 29 мая 1979 г. N 226/II-5.

Должностные лица привлекаются к административной и уголовной ответственности по Закону СССР “Об охране атмосферного воздуха“, Указу Президиума Верховного Совета СССР “Об административной ответственности за нарушение законодательства об охране атмосферного воздуха“ от 19 августа 1982 г., Уголовному кодексу РСФСР (ст.223) и Уголовному кодексу союзных республик.

Местные органы Министерства природопользования СССР принимают решение о выдаче предписания на приостановку эксплуатации исходя из необходимости проводить работы по устранению допущенных нарушений, приводить в исправность сооружения и оборудование, упорядочить работу очистной аппаратуры и обеспечить постоянный учет количества и состава ЗВ, выбрасываемых в атмосферу. Если для производства работ не нужна полная остановка оборудования, инспектор предписывает ограничение выбросов.

При принятии решения о прекращении эксплуатации оборудования, остановки цехов предприятий учитывают следующее загрязнение атмосферы, формируемое сверхнормативными выбросами рассматриваемого источника:

  1. 1) превышение (ОБУВ) в 30 и более раз, установленное более 2 раз в течение года;

  2. 2) систематическое превышение при повторяемости более 50% общего объема наблюдений за срок более месяца;

  3. 3) превышение в среднем за полугодие в 5 раз и более ;

  4. 4) экстремально высокое загрязнение атмосферного воздуха.

Для атмосферного воздуха критерием экстремально высокого уровня загрязнения является содержание одного или нескольких ЗВ: 1) превышающее ПДК в 50 раз и более; 2) в 30-49 раз при сохранении этого уровня концентрации 8 ч и более; 3) в 20-29 раз при сохранении этого уровня более 2 сут.

При выбросе в атмосферу веществ, для которых не установлены ПДК или ОБУВ, или систематическом повышении содержания в атмосфере дурнопахнущих веществ решение о приостановке принимают на основе данных об ухудшении показателей здоровья населения, поражениях растительности. При повторении таких негативных явлений принимают решение о прекращении эксплуатации оборудования, цехов, участков и производств.

Решение о приостановке или прекращении эксплуатации оборудования, цехов, участков и производств принимают для предприятий, допустивших технологические и другие нарушения, приводящие к сверхнормативным выбросам или сверхнормативным уровням загрязнения атмосферы, в том числе к предприятиям:

  1. 1) выбрасывающим ЗВ в атмосферу без разрешения (ввиду отсутствия или невыполнения сроков разработки нормативов ПДВ и разрешения на выброс по вине предприятия);

  2. 2) не осуществившим в полном объеме мероприятий по сокращению выбросов ЗВ и создающим повышенные уровни загрязнения атмосферы в период неблагоприятных метеорологических условий;

  3. 3) не обеспечившим разработку и осуществление мероприятий по предотвращению залповых выбросов, создающих высокие и экстремально высокие уровни загрязнения атмосферы;

  4. 4) допустившим аварийную ситуацию на предприятии и аварийное отключение крупных пылегазоочистных установок;

  5. 5) нарушившим правила эксплуатации и не использовавшим установки очистки газов или не обеспечившим своевременное и в полном объеме выполнение заданий директивных органов по охране атмосферы;

  6. 6) приступившим к эксплуатации технологического оборудования с незавершенным строительством установок очистки газа и систем снижения выбросов ЗВ, предусмотренных согласованным с Министерством природопользования СССР (с Госкомгидрометом СССР до 1989 г.) проектом на строительство и реконструкцию предприятия, или при отсутствии согласованного с Министерством природопользования СССР проекта на строительство и реконструкцию;

  7. 7) выпустившим продукцию, в том числе двигатели, с нарушением стандартов на содержание ЗВ в отходящих и отработанных газах;

  8. 8) нарушившим правила складирования промышленных и иных отходов, транспортировки, хранения и применения средств защиты растений, стимуляторов их роста, минеральных удобрений и других препаратов, повлекших или могущих повлечь загрязнение атмосферы;

  9. 9) допустившим производство передвижных ИЗА с нарушением требований нормативно-технической и конструкторской документации (в объеме более 10% транспортных средств из проверенной партии);

  10. 10) допустившим эксплуатацию транспортных средств, если выбросы от более 30% автомашин проверенной партии превышают установленные нормативы, и допустившим отсутствие контроля содержания ЗВ в отходящих газах.

Превышение нормативов ПДВ является достаточным основанием для принятия немедленных запретительных мер для эксплуатируемого оборудования, установок, цехов и предприятия в целом. Решения о санкциях принимают, учитывая неблагоприятное воздействие выбрасываемых вредных веществ на состояние воздуха в городе или районе (при наличии наблюдений на стационарных постах контроля загрязнения атмосферы, при проведении подфакельных и маршрутных наблюдений).

Рекомендуется следующий порядок учета наблюдаемых превышений санитарно-гигиенических нормативов качества воздуха при вынесении санкций предприятию.

Ограничивают выбросы или приостанавливают эксплуатацию оборудования, установок, цехов и предприятий в следующих случаях:

  1. 1) если в результате сверхнормативных выбросов рассматриваемого источника содержание одного или нескольких веществ в воздухе превышает максимально разовую или ориентировочно безопасный уровень воздействия (ОБУВ) в 5 раз и более, не менее чем за два срока наблюдений в течение суток;

  2. 2) если в течение месяца наблюдается систематическое превышение при повторяемости более 20% общего объема наблюдений;

  3. 3) если в среднем за полугодие зафиксированы превышения среднесуточной в 3 раза и более.

Запрет эксплуатации оборудования, установок и цехов, являющихся источниками повышенной опасности для окружающей среды (атмосферы), надо сопровождать принятием экономически обоснованного решения по 1) реконструкции производства или предприятия, 2) выносу части производств или всего предприятия за пределы населенной территории, 3) перепрофилированию предприятия.

11.3. ОЦЕНКА СОБЛЮДЕНИЯ НОРМАТИВОВ И КРИТЕРИИ ПРИНЯТИЯ РЕШЕНИЙ
ПРИ КОНТРОЛЕ АВТОТРАНСПОРТА

Все транспортные средства, находящиеся в эксплуатации, надо подвергать контролю за соблюдением нормативов предельно допустимых выбросов ЗВ. Нормативы устанавливаются государственными и отраслевыми стандартами. Производство и эксплуатация транспортных средств, в выбросах которых содержание загрязняющих веществ превышает установленные нормативы, не допускается.

Нормативы содержания СО и в отходящих газах автомобилей с бензиновыми двигателями установлены ГОСТом 17.2.2.03-87 “Охрана природы. Атмосфера. Нормы и методы измерений содержания окиси углерода и углеводородов в отработанных газах автомобилей с бензиновыми двигателями“ и приведены в табл.11.1.

 Таблица 11.1

     
Предельно допустимое содержание СО и в отходящих газах автомобилей

Частота вращения

Предельно допустимое
содержание СО,%, объема

Предельно допустимое содержание углеводородов, доля объема, млн

для двигателя с числом цилиндров

до 4

более 4

Минимальная

1,5

1200

3000

Повышенная

2,0

600

1000

При контрольных проверках автомобилей в эксплуатации органами Госкомприроды СССР и Госавтоинспекции МВД СССР допускается содержание СО до 3 об.% на частоте вращения .

Данные нормы не распространяются на автомобили, полная масса которых менее 400 кг или максимальная скорость не превышает 50 км/ч, на автомобили с двухтактными и роторными двигателями, на автомобили высшего класса и автомобили, эксплуатируемые в высокогорных условиях.

Нормативы дымности отработавших газов грузовых автомобилей и автобусов с дизелями установлены ГОСТом 21393-75 “Автомобили с дизелями. Дымность отработанных газов “ и приведены в табл.11.2.

Таблица 11.2

     
Предельные значения дымности

Режим измерения дымности

Дымность,%

Свободное ускорение для автомобилей с дизелями

без поддува

  40

с поддувом

50

Максимальная частота вращения

15

Должностные лица, виновные в выпуске в эксплуатацию автомобилей, у которых содержание ЗВ в выбросах превышает установленные нормативы, подвергаются предупреждению или штрафу до 100 рублей. Граждане, виновные в эксплуатации автомобилей, у которых содержание ЗВ в выбросах превышает установленные нормативы, подвергаются предупреждению или штрафу до 30 рублей.

Государственный контроль за соблюдением нормативов предельно допустимых выбросов ЗВ в атмосферу, установленных для автотранспортных средств, осуществляется Государственной автомобильной инспекцией Министерства внутренних дел СССР. Государственные комитеты по охране природы осуществляют государственный контроль за осуществлением мероприятий по предотвращению и сокращению выбросов ЗВ в атмосферу автотранспортными средствами.

 12. ТИПОВЫЕ НОРМЫ ВРЕМЕНИ НА ПРОВЕДЕНИЕ РАБОТ
ПО ГОСУДАРСТВЕННОМУ КОНТРОЛЮ ИЗА

12.1. ОБЩИЕ ПОЛОЖЕНИЯ

12.1.1. Типовые нормы времени на проведение инспекционных работ по контролю ИЗА обязательны для применения в подразделениях Госкомприроды СССР, осуществляющих контроль ИЗА (включая лаборатории по отбору и анализу проб выбросов) при определении численности персонала.

При разработке типовых норм использованы следующие материалы:

  1. 1) материалы хронометражных наблюдений и метод укрупненных показателей;

  2. 2) типовые нормы времени на лабораторные работы в нефтегазопереработке (М.: Изд. ЦНИИОнефть, 1982);

  3. 3) методика определения численности персонала, необходимого для проведения работ по контролю за выбросами в атмосферу и пылегазоулавливающих установок (М.: Изд. НИИОГАЗ, 1982);

  4. 4) прейскурант на работы по обследованию и оказанию технической помощи в эксплуатации газоочистных и пылеулавливающих установок на промышленных предприятиях;

  5. 5) сборник методик по определению концентраций загрязняющих веществ в промышленных выбросах (Л.: Гидрометеоиздат, 1987);

  6. 6) отраслевые методики проведения анализов, ГОСТы, ТУ, ТО на анализируемые продукты и применяемые приборы;

  7. 7) положение о порядке разработки нормативных материалов для нормирования труда;

  8. 8) временные указания по нормированию и планированию работ подразделений государственной инспекции по охране атмосферного воздуха (М.: Изд. Госконтрольатмосфера, 1987).

12.1.2. Нормы труда и затраты рабочего времени содержат следующее:

- основное время ,

- вспомогательное время ,

- время на подготовительно-заключительные работы ,

- время на обслуживание рабочего места ,

- время на отдых и личные надобности .

Основным или технологическим называется время , непосредственно затрачиваемое на измерение концентраций, скоростей потока, давления и температуры, расчет результатов, проверку газоочистного оборудования и т.п.

Вспомогательным называется время , затрачиваемое на действие, обеспечивающее выполнение основной работы (включение и выключение устройств, установка пробоотборного устройства, установка пневмометрических трубок, манометров, термометров, анализ и оформление документов и т.д.).

Время на подготовительно-заключительные работы объединяет затраты времени на общую подготовку средств отбора и анализа проб, газоаналитической аппаратуры, на расчет и оформление результатов.

Время на отдых и личные надобности затрачивается на перерыв в работе для поддержания трудоспособности работающего, его личную гигиену и естественные надобности.

Время на отдых устанавливается в зависимости от условий труда. Указанные затраты рабочего времени представляют собой регламентированные перерывы в работе.

Время на обслуживание рабочего места используется на уход за рабочим местом в процессе контроля данного источника (смазка и регулировка устройства в процессе измерений, уборка рабочего места, переналадка мест отбора и т.д.).

Общая норма на контроль представляет собой сумму составляющих норм времени:

.                                                    (12.1)

12.2. НОРМЫ ВРЕМЕНИ НА ПРОВЕДЕНИЕ КОНТРОЛЯ

12.2.1. При контроле ИЗА с использованием инструментальных средств (газоанализаторов) и при неавтоматизированных измерениях инструментально-лабораторными методами основной нормируемой единицей являются затраты времени на проведение измерений в замерном сечении. Замерное сечение - это сечение газохода источника выделений, в котором измеряются концентрации ЗВ и физических параметров потока.

Время на подготовительно-заключительные работы определяют по соотношению

,                                                                                    (12.2)

где - норма времени на подготовительно-заключительные работы в -м замерном сечении, - число этапов подготовительно-заключительных работ в -м замерном сечении.

Общую норму времени на контроль предприятия определяют по соотношению

,                                                                              (12.3)

где - число замерных сечений, подлежащих контролю.

12.2.2. Основное время на одно замерное сечение является суммой времени, необходимого для измерения концентраций твердых или газообразных ЗВ () и для измерения параметров газового потока :

,                                                                          (12.4)

Основное время для измерения концентрации с использованием газоанализаторов , где - число точек измерения в замерном сечении; при равномерном распределении концентрации по сечению.

Основное время для отбора и анализа одной пробы в -м замерном сечении в зависимости от концентрации пыли при определении запыленности гравиметрическим методом с отбором способом внешней фильтрации приведено в табл.12.1.

Таблица 12.1

          
Основное время, затрачиваемое одним человеком для отбора и анализа одной пробы, ч

Концентрация пыли в газе, мг/м

100-500

500-1000

1000-5000

>5000

Основное время

0,5-1,00

0,42-0,50

0,25-0,42

0,17-0,25

Основное время для определения параметров газовых потоков в газоходе определяют по табл.12.2.

Таблица 12.2

     
Основное время, затрачиваемое одним человеком
на определение параметров газовых потоков, в зависимости
от числа точек измерения в замерном сечении

1

2

3

4

5

6

8

9-12

16

Основное время, ч

0,30

0,43

0,50

0,77

0,82

1,05

1,15

1,60

2,6

Затраты времени на операции, включаемые в основное время при определении концентраций основных ЗВ лабораторно-инструментальными методами, приведены в табл.12.3.

Таблица 12.3

     
Трудоемкость лабораторно-инструментальных методов
определения концентрации ЗВ

Операция

Трудоемкость в расчете на 5 проб (замерное сечение), чел/ч

Отбор проб для определения концентрации

1,65

Отбор проб для определения концентрации

1,50

Анализ проб и расчет для определения концентраций:

колориметрическим методом с парарозанилином

1,83

титрометрическим методом с и тороном-I

1,25

2,06

12.2.3. Вспомогательное время является суммой вспомогательного времени, необходимого для измерения концентраций ЗВ , параметров газового потока и времени на обработку и оформление результатов измерений :

.

Так, при определении концентрации ЗВ с помощью газоанализаторов это время составляет:

- при высоте замерного сечения 10 м - 0,2 ч;

- при высоте замерного сечения более 30 м - 1 ч.

Вспомогательное время для анализа запыленности гравиметрическим методом определяют по данным табл.12.4.

Таблица 12.4.

     
Вспомогательное время для анализа гравиметрическим методом запыленности
в зависимости от высоты места отбора пробы на одного человека, ч

Концентрация пыли в газе, мг/м

<10 м

10-20 м

>30 м

100-500

0,13

0,16

0,19

500-1000

0,07

0,10

0,13

1000-5000

0,03

0,05

0,08

более 5000

0,03

0,05

0,07

Вспомогательное время при определении параметров газового потока в одном замерном сечении принимают по табл.12.5.

 Таблица 12.5

     
Вспомогательное время на одного человека
при определении параметров газового потока в зависимости
от числа точек в замерном сечении

1

2-3

4

5

6

8-9

12

16

Вспомогательное время, ч

0,13

0,17

0,22

0,25

0,28

0,33

0,40

0,50

Вспомогательное время на обработку и оформление результатов составляет 15% основного времени, но не более 1,5 ч для каждого замерного сечения.

12.2.4. Время на подготовительно-заключительные работы. Перечень этапов подготовительно-заключительных работ и соотношения для определения их норм времени приведены в табл.12.6. Затраты времени на подготовительно-заключительные работы при лабораторно-инструментальном контроле концентраций ЗВ приведены в табл.12.7.

Таблица 12.6

     
Определение норм времени на подготовительно-заключительные работы

Вид подготовительно-заключительных работ

Соотношение для определения нормы времени

Ориентировочное число исполнителей

Приготовление растворов, построение градуировочных графиков и т.п.

См. табл.12.7

2

Переход или переезд от места постоянной дислокации аппаратуры до замерного сечения и обратно на расстояние

при скорости перехода 5 км/ч

4

Переезд от места постоянной дислокации

при скорости переезда 25 км/ч

4

Подключение электрических и пневматических устройств к магистралям предприятия

при работе в обычных условиях

2

при работе в условиях, связанных с пожаром и взрывоопасностью

Расконсервация, прогрев, проверка, настройка и калибровка аппаратуры

норма времени на одно замерное сечение при использовании газоанализаторов

2

Отключение электрических и пневматических магистралей предприятия

ч

2

Техническое обслуживание и консервация аппаратуры после окончания измерений

2

Профилактический осмотр, ремонт и замена деталей, приспособлений, приборов и оборудования

2

Проведение общеознакомительных работ

, где - время на проведение общеознакомительных работ, значения приведены в табл.12.8

1

 Составление программы инструментального контроля

ч

Составление акта инспекционного контроля

ч

1

Контрольный осмотр пробоотборных узлов

, где
- расстояние для перехода к -му замерному сечению

1

Таблица 12.7

          
Трудоемкость операций при лабораторно-инструментальном методе
определения концентраций ЗВ

Операция

Трудоемкость в расчете на 5 проб (замерное сечение), чел/ч

Подготовка к отбору проб, сборка, установка и проверка на герметичность

0,66

Подготовка химической посуды для анализа и поглотителей к отбору

0,84

Подготовка растворов и реактивов для определения концентрации колориметрическим методом и построение градуировочного графика

0,22

То же для определения титрометрическим методом с и тороном-I

0,14

То же для определения с реактивом Грисса

0,06

Таблица 12.8

     
Затраты времени на проведение общеознакомительных работ
на иногороднем (числитель) и местном (знаменатель) предприятии
в зависимости от числа измерительных точек на предприятии

1-10

11-20

21-30

>30

Время, ч

40/16

46/22

52/28

62/30

12.2.5. Время на отдых и личные надобности принимают следующим:

  1. 1) для нормальных условий труда - 10% основного времени;

  2. 2) при воздействии неблагоприятных метеорологических условий - 14% основного времени;

  3. 3) при воздействии шумов и вибрации - 12% основного времени;

  4. 4) при одновременном воздействии неблагоприятных факторов - 18% основного времени.

12.2.6. Время на обслуживание рабочего места при контроле одного замерного сечения составляет 10% основного времени, но не более 1,2 ч.

12.2.7. При расчетах норм времени в необходимых случаях можно применять коэффициенты, увеличивающие норму времени:

,                                                                                     (12.5)

где при условиях работы, относящихся к вредным (верхнее значение коэффициента принимают при использовании индивидуальных средств защиты органов дыхания, зрения и слуха); при расположении замерного сечения на высоте не более 5 м от земли; при работе вне помещений при температуре ниже 0 и выше 30 °С.

Норму времени устанавливают на каждое замерное сечение источника загрязнения или контролируемое предприятие в целом. Порядок расчета норм времени следующий.

1. Расчет нормы времени необходимо начинать с подготовки исходных данных для расчета. В них входят:

  1. 1) расстояние переезда (при контроле иногородного объекта) или перехода до объекта ;

  2. 2) число замерных сечений, подлежащих контролю, ;

  3. 3) число измерительных точек в замерном сечении, ;

  4. 4) число используемых газоанализаторов;

  5. 5) высота замерного сечения над поверхностью земли;

  6. 6) условия работы при отборе проб.

2. Рассчитывают основное время. Составляют перечень подготовительно-заключительных работ и определяют подготовительно-заключительное время как сумму составляющих времени.

3. Рассчитывают вспомогательное время .

4. Рассчитывается время на отдых и личные надобности .

5. Рассчитывают время обслуживания рабочего места .

6. Суммируя результаты по формуле (12.1), определяют норму времени , которую при необходимости умножают на коэффициент, учитывающий условия труда.

12.3. НОРМЫ ВРЕМЕНИ НА ПРОВЕДЕНИЕ ИНСПЕКЦИОННОЙ ПРОВЕРКИ ПРЕДПРИЯТИЙ

Инспекционные проверки предприятий осуществляют с периодичностью, указанной в табл.12.9.

Таблица 12.9

Периодичность инспекционной проверки предприятий

Категория опасности предприятия

Периодичность проверки

Коэффициент для расчета времени

I

Раз в 6 мес

2,0

II

Раз в год

1,0

III

Раз в 3 года

0,3

Категорию опасности предприятий определяют в соответствии с разделом 5 настоящего Руководства. При этом категория опасности предприятия повышается на единицу при числе ИЗА на предприятии более 100.

Категорию опасности автопредприятий определяют по табл.12.10.

Таблица 12.10

Классификация автопредприятий как объектов инспекционного контроля

Категория опасности

Число единиц автотранспорта

Доля автомобилей, проходящих контроль, %

1

>500

10

2

100-500

20

3

<100

30

Примечание: Цех промышленного предприятия, имеющий более 100 единиц автотранспорта, рассматривают как самостоятельное автопредприятие.

Помимо проверок в полном объеме, периодичность которых приведена в табл.12.9, проводят целевые проверки по определенным направлениям контроля за охраной атмосферного воздуха, на которые резервируют время, исходя из соотношений, приведенных в табл.12.11.

Таблица 12.11

 Объем целевых инспекционных проверок

Вид целевой проверки

Число проверок

Коэффициент для расчета времени

Проверка выполнения ранее выданных предписаний

30% годового числа проверок

0,3

Проверка доведения плана до предприятия

100% числа предприятий, обязанных иметь планы

0,1

Проверка выполнения мероприятий при неблагоприятных метеорологических условиях

30% числа предприятий, получивших предупреждения о неблагоприятных метеорологических условиях

0,3

Проверки жалоб и достоверности мероприятий, надзор за строительством, применением пестицидов и т.д.

5% годового числа проверок

0,05

Дополнительно учитывают время, необходимое для обследования установок очистки газов. При этом на обследование одного условного аппарата пылегазоочистки (АУ) отводят 0,5 чел/ч ( чел/ч).

По затратам времени на обследование аппарата очистки газа соответствуют определенному числу аппаратов условных пылеочистки АУ:

Группа (название) аппарата очистки газа

Число АУ

1 (сухие механические пылеуловители)

1

2 (мокрые пылеуловители)

2

3 (промышленные фильтры)

3

4 (электрические пылеуловители)

4

5 (установки сорбционной газоочистки)

2

6 (установки термической и термокаталитической очистки)

2

В обследование аппаратов очистки газа не входят работы по определению эффективности ГОУ на основе проведения инструментальных замеров.

Перечень основных видов выполняемых работ при инспекционных проверках предприятий и трудозатраты на их выполнение приведены в табл.12.12 и 12.13. В перечень не включены работы по инструментальному и инструментально-лабораторному контролю ИЗА, рассмотренные и п.12.2.

Таблица 12.12

     
Основные виды работ, выполняемых в государственной инспекции
при инспекционной проверке предприятия

Вид работ

Трудозатраты на одну проверку, чел-ч

1. Подготовка и проверка воздухоохранной деятельности предприятия:

1.1. Анализ документов, имеющихся в инспекции:

4,0

- актов по результатам предыдущих проверок предприятия;

- протоколов об административных нарушениях;

- постановлений на приостановку и разрешений на возобновление работы;

- справок на премирование и депремирование;

- статистической и другой отчетности предприятий;

- планов мероприятий по охране атмосферного воздуха
и на период неблагоприятных метеоусловий;

- разрешения на выброс вредных веществ;

- проектов норм ПДВ;

- результатов инструментального контроля источников выбросов загрязняющих веществ в атмосферу

1.2. Ознакомление с директивными документами, приказами и указаниями руководства госинспекции, имеющими отношение к проверенному предприятию

1,5

2. Оформление результатов проверки:

4,0

Регистрация акта по результатам проверки

0,3

Регистрация протоколов на штраф, постановлений на приостановку, справок на депремирование

0,5

Составление отчетности о проверке

1,0

Подготовка справочных материалов

1,0

3. Работы по государственному контролю, выполняемые в период между проверками:

215,0

Контроль за исполнением предписаний госинспекции по данным предприятий

10,0

Согласование проектов государственных планов по охране атмосферного воздуха

50,0

Переписка с предприятием

50,0

Регистрация технических паспортов на установки очистки газа

40,0

Оформление выдачи справок на премирование

20,0

Рассмотрение документов по охране атмосферы по запросу предприятия

20,0

Ознакомление с проектами норм ПДВ, находящимися на рассмотрении; выдача заключения инспектора для принятия согласованного решения по проекту

40,0

Анализ, оформление, регистрация и выдача (продление) разрешения на выброс вредных веществ

5,0

Анализ статистических отчетов 2-ТП (воздух) и 18-КС

30,0

4. Прочие виды работ, выполняемые инспектором в период между проверками:

590,0

Прием представителей предприятий и организаций, посетителей

410,0

Рассмотрение писем и жалоб граждан

38,0

Подготовка документов для местных и советских органов и прокуратуры

72,0

Выполнение оперативных и внеплановых заданий

30,0

Таблица 12.13

     
Основные виды работ, выполняемых на предприятии при инспекционной проверке,
и трудозатраты на одну проверку, чел/ч

Категория предприятия

Вид работ

1

2

3

1. Работы, выполняемые при проверке воздухоохранной деятельности предприятия в полном объеме:

на промышленном предприятии

64

40

24

на автопредприятии

24

20

16

1.1. Ознакомление руководства предприятия с целями и задачами проверки, встреча с компетентными представителями администрации

1,0

0,5

0,5

1.2. Проверка организации работ по охране атмосферного воздуха:

наличие нормативной и законодательной документации

0,3

0,2

0,2

наличие приказов по предприятию, приказов министерств и других вышестоящих организаций

0,2

0,2

0,2

наличие положений о соответствующих структурных подразделениях, должностных и  производственных инструкций

1,0

0,7

0,5

1.3. Проверка:

выполнения мероприятий по охране атмосферного воздуха, предусмотренных постановлениями директивных органов

0,6

0,3

0,2

выполнения годового плана по охране атмосферного воздуха

0,4

0,2

0,1

достоверности форм отчетности

8,0

4,0

2,0

материалов по инвентаризации ИЗА

2,0

1,0

0,5

достоверности первичного учета по формам ПОД-1 - ПОД-3

1,3

1,0

0,5

карты-схемы промышленной площадки с нанесением источников выбросов

0,8

0,5

0,2

соблюдения норм ПДВ (ВСВ) по данным ведомственного контроля

1,0

0,5

0,3

журналов учета поступающих предупреждений о неблагоприятных метеорологических условиях и принятых мер

2,0

1,0

-

технических паспортов на установки очистки газа

2,5

1,8

1,0

1.4. Ознакомление:

с проектной и технологической документацией

4,0

2,0

1,5

с техническими отчетами специализированных организаций

2,0

1,0

1,0

с материалами СЭС, ГАИ и др.

1,0

0,5

0,5

1.5. Обследование предприятия:

22,0

14,8

7,0

1.5.1. Ознакомление с технологическими особенностями данного производства

3,5

2,0

1,0

1.5.2. Технический осмотр стационарных ИЗА:

неорганизованных источников выделения,

8,0

5,0

2,0

организованных источников выделения,

2,0

1 0

0,5

не оснащенных
_____________  установками очистки газа
оснащенных

3,0
______
3,0

2,0
______
2,0

1,0
________
1,0

В зависимости от числа условных ПГУ (АУ)

1.5.3. Ознакомление с работой лаборатории контроля выбросов в атмосферу и результатами контрольных замеров

2,0

1,5

-

1.5.4. Ознакомление с расположением мест отбора проб выбросов

3,0

1,5

0,5

1.5.5. Проверка транспортного подразделения предприятия:

2,5

2,0

1,5

проверка контрольно-регулировочного пункта автотранспортного цеха предприятия

0,5

0,5

0,5

технический осмотр передвижных ИЗА, в том числе проверка отходящих газов автомобилей инструментальным методом

2,0

1,5

1,0

1.5.6. Переезд с одной промышленной площадки на другую и возвращение на основную территорию

1,0

1,0

1,0

1.5.7. Подведение итогов проверки:

составление и оформление акта по результатам проверки

7,5

5,0

3,0

оформление протоколов на штраф, постановлений на приостановку, справок на депремирование и др.

1,0

1,0

1,0

проведение совещания по итогам инспекционного обследования

1,5

1,0

1,0

2. Работы, выполняемые при целевых проверках воздухоохранной деятельности предприятия

2.1. Проверка выполнения предприятием мероприятий по охране атмосферного воздуха, предусмотренных постановлениями директивных органов

0,6

0,3

0,2

2.2. Проверка выполнения предприятиями ранее выданных предписаний:

на промышленном предприятии

16,0

8,0

8,0

на автопредприятии

8,0

8,0

8,0

2.3. Предупредительный надзор за ходом строительства объектов и участие в Государственных комиссиях по приемке законченных строительством объектов

3,0

2,5

2,0

2.4. Проверка предприятий при неблагоприятных метеорологических условиях (промышленные и автопредприятия)

4,0

4,0

4,0

2.5. Проверка предприятия при аварийных и залповых выбросах

5,0

4,0

2,5

2.6. Проверка предприятия по жалобам, заявлениям и предложениям трудящихся

5,0

4,0

2,5

2.7. Прочие проверки предприятия

6,0

4,0

2,0

Время (в часах на одного человека), необходимое для проведения плановой проверки предприятий региона, рассчитывают по формуле     

                                  (12.6)


где , и - соответственно число предприятий 1-3-й группы, автопредприятий и пылегазоочистных установок в условных единицах, подлежащих проверке в течение года:

- число предприятий, обязанных иметь плановые задания;

- число предприятий, получающих предупреждения о неблагоприятных метеоусловиях;

и - коэффициент и время, необходимое для проверки в полном объеме;

и - коэффициент и время, необходимое для проверки ранее выданных предписаний;

и - коэффициент и время, необходимое для доведения плана до предприятия;

и - коэффициент и время, необходимое для проверки выполнения мероприятий при неблагоприятных метеоусловиях;

и - коэффициент и время, необходимое для других видов целевых проверок.

 ПРИЛОЖЕНИЕ 1

     
Перечень методических и справочных материалов,
используемых при контроле ИЗА

Документ

Разработчик

Год разра-
ботки

Краткое содержание

Методические указания по определению параметров газовых потоков для определения и расчета выбросов из стандартных источников разного типа

ГГО им. А.И.Воейкова

1985

Содержат методы определения основных параметров газовых потоков для различных типов источников и указания по применению приборов

Типовая инструкция по организации системы контроля промышленных выбросов в атмосферу в отраслях промышленности

То же

1986

Предназначена для использования министерствами и ведомствами союзного и республиканского подчинения

Временные методические указания по контролю двуокиси серы в  источниках промышленных выбросов

1982

Предназначены для организации и проведения инспекционного контроля за содержанием двуокиси серы в выбросах с помощью ГКП-1

Временное руководство по контролю источников загрязняющих веществ в атмосферу с применением газо-
аналитических приборов, части 1 и 2

1986

Подготовлено для оказания практической помощи сотрудникам госинспекции по охране атмосферного воздуха

РД. Охрана природы. Атмосфера. Требования к точности контроля промышленных выбросов

1986

РД распространяется на методы измерения концентрации 3В и объемного расхода газовой смеси в выбросах из всех типов организованных ИЗА

Методика инспекционного контроля за выбросами загрязняющие веществ с отработавшими газами двигателей автотранспортных средств

1987

Методика определяет порядок применения анализаторов и дымомеров для контроля за  выбросами 3В с отработанными газами двигателей автотранспорта

Требования к построению, содержанию и изложению методик выполнения измерений концентраций загрязняющих веществ в промышленных выбросах

1987

Предназначены для использования организациями - разработчиками лабораторно-инструментальных методик контроля содержания ЗВ в выбросах в атмосферу

Рекомендации по внедрению на сети Госкомгидромета СССР “Временных методических указаний по контролю двуокиси серы и оксида углерода в источниках промышленных выбросов“

ГГО им. А.И.Воейкова

1983

Рекомендации предназначены для передачи службе сети Госкомгидромета СССР опыта применения на практике “Временных методических указаний“ и для знакомства сетевых служб со спецификой применения ВМУ при инспекционном контроле промвыбросов

Временные методические указания по определению углеводородов в выбросах с применением газоанализаторов микроконцентраций

То же

1976

Предназначены для проведения наблюдений за загрязнением атмосферы окисью углерода с помощью ГМК-3

Временная инструкция по организации метрологического обслуживания ГКП-1 на сети наблюдений Госкомгидромета СССР

1982

Определяет порядок организации метрологического обслуживания ГКП-1 на сети

РД. Методические указания по эксплуатации электроаспиратора ЭА-1

1985

Распространяются на ЭА-1 для отбора проб воздуха на пунктах наблюдения типа Пост-1

Сборник методик по определению концентраций загрязняющих веществ в промышленных выбросах

Госкомгидромет СССР

1987

Предназначены для определения  содержания 3В в отходящих газах промышленных предприятий и обязательны к применению всеми организациями, осуществляющими отраслевой и государственный контроль

Методические указания. Автоматическая измерительно-информационная система наблюдений и контроля среды РД 02.1465-86.86  

То же

1987

Устанавливает порядок, организацию и методы обследования объекта автоматизации при создании автоматической измерительно-информационной системы наблюдения и контроля природной среды

РД. Методические указания по определению углеводородов в выбросах с применением газоанализаторов микроконцентраций

1986

Предназначены для измерений концентраций углеводородов в выбросах в атмосферу

РД. Методические указания по определению диоксида серы в выбросах с применением газоанализаторов микроконцентраций

Госкомгидромет СССР

1986

Предназначены для измерений концентраций диоксида серы

РД. Методические указания по определению концентраций оксидов азота

То же

1986

Предназначены для измерения концентраций оксидов азота

РД. Методические указания по определению суммы углеводородов в выбросах с использованием автоматического газоанализатора

1986

Предназначены для проведения измерений концентраций углеводородов

РД. Методические указания по определению оксидов углерода, диоксида серы и оксидов азота в промышленных выбросах с использованием автоматических газоанализаторов

1986

Распространяется на ГИАМ-10, предназначенный для измерения концентраций оксидов углерода, диоксида серы и оксидов азота

Методические указания по определению оксида углерода в выбросах с применением газоанализаторов микроконцентраций

1986

Распространяются на ГМК-3 и УДР, предназначенные для измерения концентраций оксидов углерода

РД. Методические указания по определению оксидов азота с применением газоанализаторов микроконцентраций

1986

Распространяются на 645 ХЛ-01 и УДР, предназначенные для измерения концентраций оксидов азота

РД. Единые отраслевые нормы времени на работы по отбору проб воздуха, их анализу, обработки материалов наблюдений, составлению информационных документов

1986

Содержат отраслевые нормы времени на подготовку к отбору проб воздуха, отбор и анализ воздуха, контроль работы ГКП-1 и ГМК-3

Методические указания по определению и расчету вредных веществ из основных источников предприятий нефтеперерабатывающей и нефтехимической промышленности

Госкомгидромет СССР

1984

Содержат указания по определению вредных веществ в выбросах предприятий нефтехимической и нефтеперерабатывающей промышленности

Методические указания. Системы контроля точности результатов измерений показателей загрязненности контролируемой среды РД 52.24-66-86

То же

1986

Устанавливают порядок проведения и содержание работ по внутреннему и внешнему контролю точности результатов измерения содержания ЗВ в атмосфере, почве и воде

Инструкция о порядке рассмотрения согласования и экспертизы воздухоохранных мероприятий и выдачи разрешений на выброс загрязняющих веществ в атмосферу по проектным решениям

Госкомгидромет СССР

1984

Устанавливает требования в части согласования и экспертизы мероприятий по охране атмосферы и выдачи разрешений на выброс 3В

Методические указания по расчету выбросов вредных веществ автомобильным транспортом

То же

Содержат указания по расчету выбросов вредных веществ автомобильным транспортом

Временная методика определения экономической эффективности осуществления природоохранных мероприятий и оценки экономического ущерба, причиняемого народному хозяйству загрязнением окружающей среды

АН СССР

1982

Методика предназначена для расчета экономической эффективности осуществления природоохранных мероприятий

Временные указания по определению фоновых концентраций вредных веществ в атмосферном воздухе для нормирования выбросов и установления ПДВ

Минздрав СССР

1982

Предназначены для определения фоновых концентраций 3В в атмосфере

Временная инструкция по контролю за соблюдением норм вредных выбросов в атмосферу, установленных для предприятий в целом

Министерство нефте-
перерабатывающей и нефтехимической промышленности СССР

1984

Предусматривает установление норм вредных выбросов в атмосферу для предприятий в целом

Методические указания по внедрению ГОСТ 17.2.302-78* "Охрана природы. Атмосфера. Правила установления выбросов вредных веществ промышленных предприятий“ РД 50-210-80
______________
     * Вероятно ошибка оригинала.
     Следует читать ГОСТ 17.2.3.02-78

Госстандарт СССР

1981

Предназначены для министерств и ведомств, организаций по стандартизации в области защиты атмосферы и охраны природы

Инструкция о порядке согласования, разработки, утверждения и внедрения в действие технических условий и цен на продукцию машиностроения производственно-технического назначения (РД 4.79-76)

То же

1976

Инструкция разработана с целью повышения роли нормативно-технических документов и цен в ускорении НТП повышения технического уровня и качества продукции, ее народно-хозяйственной эффективности

Отраслевой стандарт. Отбор проб на содержание бенз(а)пирена в продуктах сгорания энергетических топлив

То же

1984

Содержит порядок и методы отбора проб для определения содержания бенз(а)пирена в продуктах сгорания топлива

Методика выполнения измерений валового выброса окислов азота с дымовыми газами на ТЭЦ с применением газоанализаторов ГХЛ-201 и МТ 34-70-029-86

Главное научно-техническое управление энергетики и электрификации

1987

Содержит метод определения валового выброса окислов азота с дымовыми газами на ТЭЦ, сжигающих любой вид топлива, с использованием сигнала ГХЛ-201 за определенный отрезок времени с состоянием отчета о выбросах

Метрологическое обеспечение контроля состояния окружающей среды. Аттестованные смеси веществ. Основные положения МИ 858-85

Свердловский филиал ВНИИ метрологии им. Менделеева

1981

Содержит общие требования и порядок разработки, утверждения и контроля качества аттестационных смесей

Временная инструкция по контролю за соблюдением норм выбросов вредных веществ в атмосферу, установленных для предприятий в целом

ВНИИнефтехим, НПО “Леннефтехим“

1985

Предназначена для контроля за соблюдением норм выбросов вредных веществ в атмосферу

Методические рекомендации по применению газоанализатора ГХ-СО-А для контроля автотранспортных выбросов

ГГО им. А.И.Воейкова

1988

Определяют порядок применения газоанализатора ГХ-СО-А для определения оксида углерода в отработанных газах автомобилей

Предметный указатель лабораторных методик измерений концентраций загрязняющих веществ в промышленных выбросах по веществам

ВНИИ охраны природы и заповедного дела

1990

Приведен перечень методик для определения концентраций ЗВ в промышленных выбросах

ПРИЛОЖЕНИЕ 2

     
Рекомендуемые технические средства для оснащения лабораторий контроля ИЗА

Техническое средство

Назначение технического средства

Диапазон измерения

Погрешность

Завод-изгото- витель

Примечание

Передвижная лаборатория контроля промышленных выбросов ПЛКПВ-1

Предназначена для обследования и инспекционного контроля источников промышленных выбросов в атмосферу

±10%

МЗКЛ, г.Мукачево, с 1992 г.

Комплектная поставка по заказу потребителя

Газоанализатор суммы углеводородов 334 КПИ ОЗ с генератором водорода ГС 111

Определение концентраций в выбросах ИЗА

0-20 г/м

±10%

КНПО "Аналитприбор",
г.Киев

Газоанализатор 305-ФА-01

Определение в выбросах ИЗА концентраций:

КНПО "Аналитприбор",
г.Киев

0-2 г/м

0-0,5 г/м

СО

0,15 г/м

±10%

0-10 г/м

0-5 г/м

Устройство ТПП-013

Отбор, транспортировка и подготовка к анализу газовой пробы для газоанализатора 305-ФА-01

Запыленность пробы до 100 г/м, влажность пробы до 100 г/м

±5 %

КНПО "Аналитприбор",
г.Киев

Устройство динамического разбавления

Разбавление газовой пробы

Коэффициент разбавления 50-1000 раз

Стабильность разбавления ±5%

НИИОГАЗ, г. Москва

Газоанализатор дистанционный ФГОО-1

Контроль содержания в выбросах промышленных предприятий

0-16 г/м

±10%

ПО Закарпат- прибор,
г.Ужгород

Газоанализатор ГИАМ-14

Определение концентраций СО, , в
технологических процессах

СО до 10%

до 70%

 до 100%

±2%

ПО "Аналитприбор", г.Смоленск

Переносной измеритель ИНА-109

Определение непрозрачности отработавших газов автомобилей

0-100 об. %

±10%

Завод аналитической аппаратуры,
г.Винница

Газоанализатор ГЛ 1122

Определение концентраций в отработавших газах автомобильных двигателей

0-1 об. %

±5%

ПО Закарпат- прибор,
г.Ужгород;
МГП "Эскорт",
г.Санкт-Петербург

Инфракрасный газоанализатор 121 ФА-01

Определение концентраций СО в отработавших газах карбюраторных двигателей

0-5 об. %

±4%

КНПО "Аналитприбор",
г.Киев;
ПО "Аналитприбор", г.Смоленск

Переносной газоанализатор СО-тестер

Определение концентраций СО в выхлопных газах транспортных
средств

0-10 г/м

±10%

ПО "Аналитприбор", г.Смоленск

С 1990 г.

Газоопределители ГХ-4, ГХ-СО-5

Определение концентраций СО в выбросах ИЗА

0-25-625 г/м

±25%

НПО "Респиратор", г.Донецк

Газоопределители
ГХПВ-1 -10, ГХПВ -1

Определение концентраций и в выбросах ИЗА

До 10 г/м

До 1 г/м

±25%


±25 %

ВНИИОСуголь,
г.Пермь

Фотоэлектроколориметр КФК-2МП, ГОСТ 12083-75

Определение оптической плотности раствора

-

±1 %

Заторский оптико-механи- ческий завод

Иономер И-130, ГОСТ 16454-79

Определение концентрации ионов в растворе

-

0,05 рН

ПО “Аналитприбор“, г.Гомель

Атомно-абсорбционный спектрофотометр С-115 “Сатурн“

Определение спектральных характеристик пробы

-

0,5%

-

Полярограф ППТ-1

Определение концентраций ЗВ в пробе

-

0,08 MB

-

Весы аналитические ВЛА-200, ВЛР-200, ГОСТ 24104-80Е

Взвешивание

0-200 г.

±0,002 мг

Завод Госметр,
г.Ленинград

Хроматограф Цвет-500 или АГАТ

Количественный анализ сложных смесей

-

-

Дзержинский филиал ОКБА

Аспиратор сильфонный АМ-5

Отбор проб газообразных выбросов

-

-

НПО "Респиратор“, г.Донецк

Электроаспиратор М-822

То же

-

-

ЛПО “Красногвар- деец“,
г.Ленинград

Электроаспиратор ЭА-1А

"

-

-

Завод комплектных лабораторий,
г.Мукачево “IMR“, ФРГ

IMR 3000 Р

Определение в выбросах ИЗА концентраций:

±2%

0-20,9%

СО

0-6000 ppm

0,20%

0-2000 ppm

-

0-100 ppm

0-200 ppm

0-4000 ppm

IMR 3010 Р

Определение в выбросах ИЗА концентраций:

±2%

“IMR“, ФРГ

0-20,9%

СО

0-2000 ppm

0-20%

0-2000 ppm

0-1000 ppm

0-100 ppm

0-100 ppm

Переносный малогабаритный газоанализатор ТЕ STO 33

 Определение в выбросах ИЗА концентраций:

“ Testoterm“, ФРГ

0-20%

0,2%

СО

0-40000 ppm

5%

0-18%

5%

0-100 ppm

5%

NO

0-1200 ppm

0-2000 ppm

Переносный малогабаритный газоанализатор MSI 2500 РТ

Определение в выбросах ИЗА концентраций:

“MSI“, ФРГ

0-20%

0,2%

СО

0-1500 ppm

5%

Зависит от вида топлива

5%

0-1500 ppm

5%

0-1000 ppm

     
 ПРИЛОЖЕНИЕ 3

     
Предметный указатель согласованных лабораторных методик измерения  
концентрации ЗВ в промышленных выбросах по веществам

В предметном указателе перечислены лабораторно-инструментальные методики определения концентраций ЗВ (табл.1) в выбросах в атмосферу, согласованные Госкомгидрометом СССР (в период до октября 1988 г.) и Министерством природопользования (Госкомприродой) СССР (с октября 1988 г.) и обязательные для использования всеми министерствами и ведомствами при отраслевом и государственном контроле источников выбросов в атмосферу (табл.2).

 Таблица 1

          
Алфавитный указатель веществ

Вещество

Номер методического документа по предметному указателю

Азота окислы

суммы окиси и двуокиси

1, 121, 130

сумма окислов (кроме закиси азота) и азотной кислоты

2, 3

Азотная кислота

2, 3

Акриловая кислота

4

Акрилонитрил

6, 47

Акролеин

5

Альдегиды

120

Алюминий (соединения)

7, 8

Алифатические спирты

120

Аммиак

9, 10, 11

Анионные поверхностно-активные вещества

12

Антрацен

14

Ароматические углеводороды

13

Ароматические полициклические углеводороды

14

Ацетон

32

Белковые вещества

15, 16

Бенз(а)пирен

14, 116, 122

Бенз(а)антрацен

14

Бенз(е)пирен

14

Бензин

17

2, 3-бензодифениленоксид

14

Бензол

13, 18

Бора оксид

123

Бром

21

Бутандиол 1, 4

19

Бутанол

20

Бyтилaцeтaт

20

Ванадия оксид (V)

128

Дибутилфталат

20

Дивинил

22

Диметилдиоксан

23

N, N-диметилформамид

114

Дифенил

14

Дифениленоксид

14

Железа соединения

24, 25

Жирные спирты

26

Золотисто-желтый ЖХ

27

Изоамилбензоат

111

Изобутилен

98

Изопентан

29

Изопрен

29

Кальций

31

Капролактам

125

Карбазол

14

Карбоновые кислоты

120

Кетоны

32

Кубовый темно-синий 0

108

Крезидин

33

Кремния двуокись

34

Ксилол

13

Ленациловая пыль

35

Магний

36

Малеиновый ангидрид

110, 127

Марганца соединения

37, 38, 39

Меди соединения

40, 41

Меркаптаны

42, 43

Метакриловая кислота

4

Метан

75

Метанол

44, 45, 120

Метилбензоат

112

Метилизобутилкетон

32, 46

Метилмеркаптан

42

Метилметакрилат

6, 47

Метилсернистые вещества

118

2-метилнафталин

14

1-метилнафталин

14

Метилэтилкетон

32, 46

Мышьяк

126

Нафталин

14

Непредельные углеводороды

13

Никель

48-50

Оксамат

51

Органические кислоты

52

Перилен

14

Пирен

14

Предельные углеводороды

13

Пропанол

26

Пыль

53

Салициловая кислота

27

Свинец (соединения)

54, 55, 97, 129

Смолистые вещества

128

Селен

41

Сера

двуокись

56-61, 130

трехокись

63

Серная кислота

63

Серный ангидрид

63

Сероводород

65

Сероуглерод

66, 67, 68, 117

Синтетические жирные кислоты

70

Скипидар

69

Сольвент

119

Стирол

13, 47, 71

Тетрахлорэтилен

71

Тиурам ЭФ

107

Толуол

13, 22

Трикрезол

109

Трихлорэтилен

72

Углерода окись

74-77

Уксусная кислота

78

Фенантрен

14

Фенол

79, 80, 109

Флуорантен

14

Флуорен

14

Формальдегид

82, 120

Фосфин

81, 134

Фосфор

82-84, 132

пятиокись

85-86, 133

Фосфорная кислота

87, 88

Фталевый ангидрид

89

Фтор

131

газообразные соединения

90-92

твердые соединения

93-94

Хладоны 11 и 12

115

Хлор

95

4-хлор-2 метилфеноксиуксусная кислота

103

Хлористый водород

96

Хлорантрахинон

27

Хлористый метил

28, 98

Хлоропрен

99

Хром (соединения)

100-102, 135

Цинк

105, 106, 136

Этанол

26, 104

Этилацетат

104

Этилбензол

6, 13, 47, 71

Этилцеллозольв

113

Таблица 2

Согласованные лабораторные методики измерения концентрации 3В
в промышленных выбросах по веществам

N

Наименование

Сокращенное название
организации-
разработчика

1

Методика определения концентрации окислов азота (оксидов азота) фотометрическим методом с использованием реактива Грисса-Иллосвая *

ВНИИОСуголь

2

Методика определения концентрации суммы оксидов азота фотометрическим методом с сульфосалициловой кислотой*

ГГО им. А.И.Воейкова

3

ОСТ “Охрана природы. Атмосфера. Отходящие газы. Определение параметров выбросов окислов азота от предприятий цветной металлургии“

ГИРЕДМЕТ

4

Методика газохроматографического определения концентрации акриловой и метакриловой кислот в газовых выбросах химической промышленности *

НИИХТП

5

Методика фотоколориметрического определения акролеина в вентиляционных выбросах и воздухе санитарной зоны

ВНИИАТИ

6

Методика определения метилметакрилата, акрилонитрила и этилбензопа в промышленных выбросах в атмосферу на предприятиях “Союзхимпласт“

ОНПО “Пластполимер“

7

Методика определения концентрации алюминия фотометрическим методом при его массовой доле от 0,05 до 1,5% *

ВНИПИЧЭО

8

Методика определения концентрации алюминия атомно-абсорбционным методом при его массовой доле от 0,4 до 3,3% *

То же

9

Методика определения концентрации аммиака фотометрическим методом с реактивом Несслера с отбором проб в газовые пипетки*

ГИАП

10

Методика определения концентрации аммиака фотоколориметрическим методом с реактивом Несслера *

ЗапСибНИИ

11

Методика определения концентрации аммиака методом обратного титрования*

То же

12

Методика фотоколориметрического oпpeдeлeния анионных поверхностно-активных веществ в газовых выбросах производства CMC

ТФ ВНИИХимпроект

13

Методика определения концентраций предельных углеводородов (суммарно), непредельных углеводородов (суммарно) и ароматических (бензола, толуола, этилбензола, ксилолов, стирола) при их совместном присутствии в промышленных выбросах

Миннефтехимпром, Казанское НПУ треста “Оргнефтехимзаводы“

14

Методика газохроматографического определения концентрации индивидуальных полициклических ароматических углеводородов в выбросах предприятий черной металлургии *

ВНИПИЧЭО

15

Методика определения белковых веществ в воздухе с использованием красителя Кумасси - бриллиантового голубого G-250

ПО “Биопрепарат“

16

Методика определения канцерогенных белковых веществ в воздухе методом пиролитической газовой хроматографии

То же

17

Методика газохроматографического определения концентраций бензина и этилацетата в промышленных выбросах*

ВНИКТИРП

18

Методика газохроматографического определения концентрации бензола

ВФ Гипрокаучук

19

Методика определения 1, 4-бутандиола в газовых выбросах

ВНИПИМ

20

Методика газохроматографического определения концентрации бутилацетата и бутанола в газовых выбросах лесохимических производств *

ЦНИЛХИ

21

Методика определения концентрации брома в промышленных выбросах полярографическим методом *

ПГМИ

22

Методика газохроматографического определения концентрации дивинила и толуола

ВФ Гипрокаучук

23

Методика газохроматографического определения концентраций диметилдиоксана

То же

24

Методика определения концентрации железа комплексонометрическим методом при его массовой доле от 1 до 30% *

ВНИПИЧЭО

25

Методика определения концентрации железа атомно-абсорбционным методом при его массовой доле от 0,3 до 55% *

То же

26

Методика газохроматографического определения концентрации жирных спиртов в газовых выбросах производств товаров бытовой химии *

ТФ ВНИИХИМпроект

27

Методические указания по измерению концентрации салициловой кислоты, золотисто-желтого ЖХ и хлорантрахинонов в промышленных выбросах

РФ НИИОПИК

28

Методика газохроматографического определения изобутилена и хлористого метила

ВФ Гипрокаучук

29

Методика газохроматографического определения концентрации изопрена и изопентана

То же

30

Методика измерения концентрации дибутилфталата в промышленных выбросах в атмосферу фотометрическим методом

31

Методика определения концентраций кальция атомно-абсорбционным методом при его массовой доле от 2 до 14% *

ВНИПИЧЭО

32

Методика газохроматографического определения кетонов (ацетона, метилэтилкетона, метилизобутилкетона) в газовых выбросах производств бытовой химии *

ВНИИХИМпроект

33

Методические указания по газохроматографическому измерению концентраций 3-амино-4-метокситолуола (крезидина) в организованных выбросах промышленных предприятий

РФ НИОПИК

34

Методика определения концентрации двуокиси кремния фотометрическим методом при ее массовой доле от 0,5 до 10% *

ВНИПИЧЭО

З5

Методика газохроматографического определения концентрации пыли ленацила в газовых выбросах

ВНИТИГ

36

Методика определения концентрации магния атомно-абсорбционным методом при его массовой доле от 0,1 до 20%*

ВНИПИЧЭО

37

Методика определения концентраций марганца титрометрическим методом при его массовой доле от 2 до 10%*

То же

38

Методика определения концентрации марганца фотометрическим методом при его массовой доле от 0,02 до 2%*

39

Методика определения концентрации марганца атомно-абсорбционным методом при его массовой доле от 0,1 до 55%*

40

Методика определения концентрации меди атомно-абсорбционным методом при его массовой доле от 0,1 до 4%*

41

ОСТ “Охрана природы. Определение параметров выбросов в воздушный бассейн меди, селена и их соединений “

УНИПРОМЕДЬ

42

Методика газохроматографического определения концентраций меркаптанов и других дурнопахнущих веществ в промышленных выбросах предприятий целлюлозно-бумажной промышленности*

СибНИИЦК

43

Методика определения концентрации меркаптанов методом потенциометрического титрования*

НИИОГАЗ, УЗПИ

44

Методика газохроматографического определения концентрации метанола в газовых выбросах лесохимических производств

ЦНИЛХИ

45

Методика газохроматографического определения метанола

ВФ Гипрокаучук

46

Методика газохроматографического определения концентраций метилэтилкетона и метилизобутилкетона в промышленных выбросах

ВНИКТИРП

47

Методика определения стирола, метилметакрилата, акрилонитрила и этилбензола в промышленных выбросах в атмосферу на предприятиях “Союзхимпласт“

ОНПО “Пластполимер“

48

Методика определения концентрации никеля атомно-абсорбционным методом при его массовой доле от 0,05 до 0,3%*

ВНИПИЧЭО

49

Методика определения концентрации никеля фотометрическим методом при его массовой доле от 0,05 до 0,4%*

То же

50

ОСТ “Охрана природы. Атмосфера. Определение параметров выбросов никеля и его соединений в атмосферу от предприятий цветной металлургии“

Гипроникель

51

Методика определения оксамата в газовых выбросах методом тонкослойной хроматографии

ВНИИХСЗР

52

Методика газохроматографического определения концентраций органических кислот в газовых выбросах промышленных производств*

ВФВНИИПАВ

53

Методика определения концентрации пыли в технологических газах *

ЗапСибНИИ

54

Методика измерения концентраций свинца в выбросах производства свинцовые пигментов в атмосферу фотометрическим методом в промышленных выбросах

ОРГХИМ

55

Методика определения свинца атомно-абсорбционным методом при его массовой доле от 0,02 до 0,5%*

ВНИПИЧЭО

56

Методика определения концентрации диоксида серы титрометрическим методом с использованием перекиси водорода и торона-I в качестве индикатора *

НИИОГАЗ, ВНИИОСуголь

57

ОСТ 48-256-86 “Охрана природы. Атмосфера. Методика хроматографического определения соединений серы в выбросах предприятий цветной металлургии“

ГИНЦВЕТМЕТ

58

Методика определения концентрации диоксида серы фотоколориметрическим методом с тетрахлормеркуратом натрия и парарозанилином*

ВНИИОСуголь

59

Методика определения концентрации сернистого газа йодометрическим методом*

НИИОГАЗ, ВНИИОСуголь

60

Методика определения сернистого газа и сероводорода йодоалкалиметрическим методом при совместном присутствии*

НИИОГАЗ, ВНИИВпроект,
Волго-Урал НИПИгаз

61

ОСТ “Охрана природы. Атмосфера. Определение параметров выбросов диоксида серы от предприятий цветной металлургии“

ГИНЦВЕТМЕТ

62

ОСТ “Выбросы газообразные при регенерации отработанных серной и азотной кислот. Методы отбора проб и анализ компонентов“

п/я В-8413

63

Методика определения концентрации триоксида серы и серной кислоты турбидиметрическим методом*

НИУИФ

64

Методика определения концентрации сероводорода фотометрическим методом по реакции образования метиленового голубого*

НИИОГАЗ, ВНИИВпроект

65

Методика определения концентрации сероводорода йодометрическим методом*

НИИОГАЗ. ВНИИВпроект,
Волго-Урал НИПИгаз

66

Методика определения концентрации сероуглерода фотометрическим методом*

ВНИИВпроект

67

Методика определения концентрации сероуглерода йодометрическим методом*

68

Методика вольтамперометрического определения сероуглерода в газовых выбросах производств бытовой химии

ТФ ВНИИХИМпроект

69

Методика газохроматографического определения концентрации скипидара в газовых выбросах лесохимических производств*

ЦНИЛХИ

70

Методика хроматографического определения концентраций синтетических жирных кислот (СЖК) в промышленных выбросах

ВНИИУС

71

Методика газохроматографического определения концентрации этилбензола и стирола в промышленных выбросах

ВФ Гипрокаучук

72

Методика газохроматографического определения концентраций трихлорэтилена и тетрахлорэтилена в промышленных выбросах

ВНИКТИРП

73

Методика газохроматографического анализа ароматических углеводородов в промышленных выбросах при длительном хранении проб

ГГО им. А.И.Воейкова

74

Методика определения окиси углерода с использованием прибора “Газохром-3101“*

НИИОГАЗ, ВНИПИЧЭО, ВНИИОСуголь

75

Методика определения окиси углерода и метана методом газовой хроматографии*

Миннефтехимпром, КПИНУ, ВНИИУС

76

Методика определения окиси углерода с использованием прибора ГХЛ-1*

НИИОГАЗ

77

Методика определения окиси углерода с использованием приборов ГХ-4 и ГХСО-5*

ВНИИОСуголь

78

Методика газохроматографического определения концентрации уксусной кислоты в газовых выбросах лесохимических производств

ЦНИЛХИ

79

Методика газохроматографического определения концентрации фенола в промышленных газовых выбросах

ВНИИУС

80

Методика фотометрического определения концентрации фенола в промышленных газовых выбросах

ВНИИАТИ

81

Методика фотоколориметрического определения формальдегида в вентиляционных выбросах и воздухе санитарной зоны

То же

82

Методика определения фосфина в отходящих газах фосфорного производства хроматографическим методом

КазНИИГИПРОфосфор

83

Методика определения фосфина в аспирационных газах при производстве желтого фосфора

То же

84

Методика определения фосфина в технологических газах печного цеха после ванны холодной конденсации

85

Методика определения элементарного фосфора в технологических газах печного цеха

86

Методика определения элементарного фосфора в отходящих газах цеха переработки фосфорного шлама фотоколориметрическим методом

87

Методика определения пятиокиси фосфора в аспирационных газах при производстве желтого фосфора

88

Методика определения пятиокиси фосфора в технических газах печного цеха колориметрическим методом

89

Методика определения суммарного содержания тумана фосфорной кислоты в окислах фосфора в газе цеха термической фосфорной кислоты

90

Методика определения концентрации газообразных соединений фтора потенциометрическим методом*

НИИОГАЗ

91

Методика определения концентрации фтористого водорода фотометрическим методом в промышленных выбросах алюминиевых заводов*

ВАМИ

92

ОСТ “Охрана природы. Атмосфера. Отходящие газы. Определение параметра выбросов фтористых соединений в атмосферу системами организованного отсоса предприятий алюминиевой промышленности“

То же

93

Методика определения концентрации твердых фторидов фотометрическим методом в промышленных выбросах алюминиевых заводов*

94

Методика определения концентрации суммы твердых фторидов потенциометрическим методом*

95

Методика определения концентрации хлора фотоколориметрическим методом по йодокрахмальной реакции*

ГосНИИхлорпроект

96

Методика определения концентраций хлористого водорода турбодиметрическим методом в газовых выбросах*

То же

97

Методика измерения концентрации свинца в выбросах производства свинцовых пигментов в атмосферу фотометрическим методом

ОРГХИМ

98

Методика газохроматографического определения изобутилена и хлористого метила

ВФ Гипрокаучук

99

Методика газохроматографического определения концентраций хлоропрена в промышленных выбросах

ВНИКТИРП

100

Методика определения концентрации соединений хрома фотоколориметрическим методом с дифенилкарбазидом при его массовой доле от 0,03 до 2% *

ВНИПИЧЭО

101

Методика определения концентрации окиси хрома титрометрическим методом при его массовой доле от 2 до 20%*

То же

102

Методика определения концентрации хрома атомно-абсорбционным методом при его массовой доле от 0,04 до 20%*

103

Методические указания по газохроматографическому измерению концентрации аэрозоля 4-хлор-2-метилфеноксиуксусной кислоты (2М-4Х) в газовых выбросах

ВНИТИГ

104

Методика газохроматографического определения концентрации этилацетата и этанола в газовых выбросах лесохимической промышленности*

ЦНИЛХИ

105

Методика определения цинка комплексонометрическим методом при его массовой доле от 0,5 до 4%*

ВНИПИЧЭО

106

Методика определения цинка атомно-абсорбционным методом при его массовой доле от 0,1 до 2% *

То же

107

Методика фотометрического определения концентрации диэтилдифенилтиурамидсульфида (тиурама ЭФ) в промышленных выбросах

НИИР

108

Методические указания по экстракционно-фотометрическому определению кубового темно-синего О

НИОПиК

109

Методические указания по газохроматографическому измерению концентраций трикрезола и фенола в технологических выбросах эмальпроизводства кабельной промышленности

ВНИИКП

110

Методика измерения концентрации малеинового ангидрида в вентиляционных выбросах в атмосферу фотометрическим методом

ОРГХИМ

111

Методические указания по газохроматографическому определению изоамилбензоата в организованных промышленных выбросах

РФ НИИОПИК

112

Методические указания по газохроматографическому определению метилбензоата в организованных промышленных выбросах

113

Методика выполнения измерений концентрации этилцеллозольва в газовых выбросах производств товаров бытовой химии газохроматографическим методом

ТФ ВНИИХИМпроект

114

Методика газохроматографического определения диметилформамида в промышленных газовых выбросах

ПО “Полимер“

115

Методика выполнения измерения концентрации хладонов 11 и 12 в газовых выбросах производств газохроматографическим методом

ТФ ВНИИХИМпроект

116

Унифицированная методика определения бенз(а)пирена в промышленных выбросах нефтехимических производств

ВНИИУС

117

Методика газохроматографического определения сероуглерода в промышленных выбросах в атмосферу предприятий ЦБП

СнбНИИЦК

118

Методика газохроматографического определения летучих метилсернистых и других веществ, содержащихся в конденсатах и сточных водах сульфатцеллюлозного производства

То же

119

Методика газохроматографического определения сольвента в газовых выбросах производства товаров бытовой химии

ТФ ВНИИХИМпроект

120

Методика определения в газовых выбросах суммы карбоновых кислот, суммы алифатических спиртов, суммы альдегидов, суммы сложных эфиров, метанола, формальдегида

ВФ ВНИИПАВ

121

Методика выполнения измерений концентраций оксидов азота и диоксида серы с отбором проб в сорбционные трубки

ВНИИОСуголь

122

Спектральный метод определения бенз(а)пирена в выбросах систем организованного отсоса алюминиевых заводов

ВАМИ

123

Методика выполнения измерений массовой концентрации оксида бора в газовых выбросах стекловаренных печей

НПО “Стеклопластик“

124

Методика определения концентрации оксида ванадия (V) в промышленных выбросах в атмосферу фотометрическим методом

ОРГХИМ

125

Методика определения концентрации капролактама в промышленных выбросах в атмосферу фотометрическим методом

То же

126

Методика выполнения измерений массовой концентрации мышьяка в отходящих газах стекловаренных печей

НПО “Стеклопластик“

127

Методика измерений концентрации малеинового ангидрида в промышленных выбросах полярографическим методом

ОРГХИМ

128

Методика весового определения смолистых веществ в промышленных выбросах

НИИР

129

Методика измерений концентрации свинца в выбросах в атмосферу полярографическим методом

ОРГХИМ

130

Методика выполнения измерения диоксида серы и оксидов азота с помощью ГХПВ-1

ВНИИОСуголь

131

Методика измерения концентрации фталевого ангидрида в промышленных выбросах в атмосферу фотометрическим методом

ОРГХИМ

132

Методика определения элементарного фосфора в отходящих газах

ЛЕННИИГИПРОХИМ

133

Методика определения оксидов фосфора в отходящих газах

То же

134

Методика определения фосфористого водорода в отходящих газах

135

Методика измерения содержания хрома в пылевых выбросах металлургических производств

Энергосталь

136

Методика измерения концентрации цинка в выбросах в атмосферу полярографическим методом

ОРГХИМ

______________________

* Методика помещена в Сборник методик по определению концентраций загрязняющих веществ в промышленных выбросах (Л.: Гидрометеоиздат, 1987). По вопросам к остальным методикам следует обращаться в организацию-разработчик.

Методики разработаны по требованиям ГОСТов 8.504-84 и 8.505-84 к методикам выполнения измерений и специфическим требованиям, предъявляемым к методам контроля выбросов; ряд методик прошли метрологическую аттестацию на отраслевом уровне или уровне предприятия. Методика N 124 прошла ведомственную аттестацию, методики N 125, 127, 128, 130, 131, 133 и 140 прошли отраслевую аттестацию. Методики N 125 и 134 согласованы только при использовании способа отбора проб непосредственно из газохода.

Приложение содержит список адресов организации-разработчиков (табл.3).

 
Таблица 3

Список адресов организаций-разработчиков

Название

сокращенное

полное

Адрес

ВАМИ

Всесоюзный научно-исследовательский и проектный институт алюминиевой, магниевой и электродной промышленности

199026, Санкт-Петербург, Средний пр., 86

ВНИИАТИ

Всесоюзный научно-исследовательский и конструкторско-технологический институт асбестовых технических изделий

150048, г.Ярославль, ВНИИАТИ

ВНИИгидролиз

Всесоюзный научно-исследовательский институт гидролиза растительных материалов научно-производственного объединения “Гидролиз“

198099, Санкт-Петербург, ул.Калинина, 13

ВНИИВпроект

Всесоюзный научно-исследовательский и проектный институт искусственного волокна

141009, Московская обл., г.Мытищи, ул.Копонцова, 5

ВНИИЙодобром

Всесоюзный научно-исследовательский институт йодобромной промышленности

334340, Крымская обл., г.Саки

ВНИИКП

Всесоюзный научно-исследовательский институт кабельной промышленности

229070, г.Юрмала-4, ул.Пиестатнес, 13

ВНИИОСуголь

Всесоюзный научно-исследовательский и проектно-конструкторский институт охраны окружающей природной среды в угольной промышленности

614600, г.Пермь, ГСП, ул.Островского, 60

ВНИИУС

Всесоюзный научно-исследовательский институт углеводородного сырья

420045, г.Казань, ул.Ершова, 35а

ВНИИХСЗР

Всесоюзный научно-исследовательский институт химических средств защиты растений с опытным заводом

109088, Москва, ул.Угрешская, 33

ВНИИЭНЕРГОЦВЕТМЕТ

Всесоюзный научно-исследовательский и проектно-конструкторский институт металлургической теплотехники цветной металлургии и огнеупоров

620014, г.Екатеринбург, пр.Ленина, 27

ВНИКТИРП

Всесоюзный научно-исследовательский и конструкторско-технологический институт резиновой промышленности

404103, Волгоградская обл., г.Волжский-3

ВНИПИМ

Всесоюзный научно-исследовательский и проектный институт мономеров

300026, г.Тула, ул.Ленина, 106а

ВНИПИЧЭО
(Энергосталь)

Всесоюзный научно-исследовательский и проектный институт по очистке технологических газов, сточных вод и использованию вторичных энергоресурсов предприятий черной металлургии

310059, г.Харьков-59, пр.Ленина, 9.

ВНИТИГ

Всесоюзный научно-исследовательский технологический институт гербицидов и регуляторов роста растений с экспериментальным заводом

450029, г.Уфа-29, ул.Ульяновых, 65

Волго-Урал НИПИгаз

Волго-Уральский научно-исследовательский и проектный институт по добыче и переработке сероводородосодержащих природных газов

460000, г.Оренбург, Пушкинская ул., 20

-

Воронежский завод синтетического каучука им. С.М.Кирова

394656, г.Воронеж, Ленинский пр., 2

ВФ ВНИИПАВ

Волгодонский филиал Всесоюзного научно-исследовательского и проектного института поверхностно-активных веществ

347340, Ростовская обл., г.Волгодонск-7,

ВФ “Гипрокаучук“

Воронежский филиал Государственного Ордена Трудового Красного Знамени проектного и научно-исследовательского института промышленности синтетического каучука

394029, г.Воронеж, Ленинский пр., 15

ВФ ЛЕННИИГИПРОХИМ

Волжский филиал института ЛЕННИИГИПРО
ХИМ

445663, г.Тольятти, ул.Новозаводская, 2

ГГО им. А.И.Воейкова

Главная геофизическая обсерватория им. А.И.Воейкова

194018, Санкт-Петербург, ул.Карбышева, 7

ГИАП

Научно-исследовательский и проектный институт азотной промышленности и продуктов органического синтеза

109815, Москва, ул.Чкалова, 50

ГИНЦВЕТМЕТ

Государственный Ордена Трудового Красного Знамени научно-исследовательский институт цветных металлов

129515, Москва, ул.Академика Королева, 13

Гипроникель

Государственный институт Гипроникель

191011, Санкт-Петербург, Невский пр., 30

ГИРЕДМЕТ

Государственный Ордена Октябрьской Революции научно-исследовательский и проектный институт редкометаллической промышленности

109017, Москва, Большой Толмачевский пр., 5

ГосНИИхлорпроект

Государственный научно-исследовательский и проектный институт хлорной промышленности

109088, Москва, ГосНИИхлорпроект

ДФ НИИОГАЗ

Дзержинский филиал Государственного научно-исследовательского института по промышленной и санитарной очистке газов

606000, Нижегородская обл., г.Дзержинск

ЗапСибНИИ

Западно-Сибирский региональный институт Госкомгидромета СССР

630099, г.Новосибирск, ул.Советская, 30

ЗФ НИИОГАЗ

Запорожский филиал Государственного научно-исследовательского института по промышленной и санитарной очистке газов

330032, г.Запорожье, Южное шоссе, 1

Казанское ПНУ “Оргнефтехимзаводы“

Казанское пуско- наладочное управление треста “Оргнефтехимзаводы“

420063, г.Казань, ул.Коломенская, 12

КазНИИГИПРОфосфор

Казахский научно-исследовательский и проектный институт фосфорной  промышленности

486031, г.Чимкент, пл.Ленина, 3

КНИФГосНИИхлорпроект

Киевский научно-исследовательский филиал Государственного научно-исследовательского института хлорной промышленности

252160, г.Киев-160, КНИФГосНИИ-хлорпроект

Миннефтехимпром СССР

Министерство нефтехимической и нефтеперерабатывающей промышленности

129832, Москва, ул.Гиляровского, 31

НИИОГАЗ

Государственный научно-исследовательский институт по промышленной и санитарной очистке газов

113105, Москва М-105, 1-й Нагатинский проезд, 6

НИИР

Научно-исследовательский институт резиновых и латексных изделий

107258, Москва, 1-я Пугачевская, 17

НИИХТП

Научно-исследовательский институт химии и технологии полимеров им. академика В.А.Каргина

606000, Нижегородская обл., г.Дзержинск, НИИполимеров

НИУИФ
НПО "Стеклопластик"

Научно-исследовательский институт инсектофунгицидов

117919, Москва, Ленинский пр., 55

141551, Московская обл., Солнечногорский р-н, п.Андреевка

ОНПО "Пластполимер"

Охтинское научно-производственное объединение "Пластполимер"

195108, Санкт-Петербург, Полюстровский пр., 32

ОРГХИМ

Ярославское специализированное производственное управление треста ОРГХИМ

150000, г.Ярославль, ул.Первомайская, 25а

ПО "Биопрепарат"

Производственное объединение "Биопрепарат"

123373, Москва, Волоколамское шоссе, 91

ПО "Полимер"

Производственное объединение "Полимер"

211440, г.Новополоцк

ПФ ГИПХ

Пермский филиал Государственного института прикладной химии

614034, г.Пермь, Пермский ф-л ГИПХ

п/я В-8414

-

606011, Нижегородская обл., г.Дзержинск, п/я В-8414

РФ НИОПИК

Рубежанский филиал Ордена Трудового Красного Знамени научно-исследовательского института органических полупродуктов и красителей

349870, Луганская обл., г. Рубежное-2, пл. Химиков, 3

СибНИИЦК

Сибирский научно-исследовательский институт целлюлозы и картона

665718, г. Братск, а/я 464

ТФ ВНИИХимпроект

Тульский филиал Всесоюзного научно-исследовательского и проектного института химической промышленности

301200, Тульская обл., г. Щекино

УЗПИ

Украинский заочный политехнический институт

310003, г.Харьков, Университетская, 16

УНИПРОМЕДЬ

Уральский ордена Трудового Красного Знамени научно-исследовательский институт медной промышленности

620219, г.Екатеринбург, ГСП-209, ул. Куйбышева, 75

ЦНИЛХИ

Центральный научно-исследовательский лесохимический институт

603603, г.Нижний Новгород, ГСП-703 ЦНИЛХИ

 ПРИЛОЖЕНИЕ 4

     
Перечень рекомендованных для применения методик
определения значений выбросов ЗВ

1. Информационный указатель отраслевых методических документов, разработанных во исполнение задания 03.07 "Разработать и внедрить инструментально-аналитические и балансовые методы определения параметров технологических выбросов и выбросов от сжигания топлив, технологических газов и производственных отходов" программы работ по проблеме ГКНТ 0.85.04 "Создать и  внедрить эффективные методы и средства контроля загрязнения окружающей среды" в течение 1981-1983 гг. , Л.: Изд. ВНИИприроды, 1985.

2. Дополнение N 1 к Информационному указателю отраслевых методических документов. - Л.: Изд. ВНИИприроды, 1986.

3. Дополнение N 2 к Информационному указателю отраслевых методических документов. ГГО, Исх. N 23/6976 от 15.08.86 г.

4. Дополнение N 3 к Информационному указателю отраслевых методических документов, ОКА ВНИИприрода, Исх N 7194/35 от 05.12.89 г.

5. Дополнение N 4 к Информационному указателю отраслевых методических документов, ОКА ВНИИприрода. - Л.: ГГО, 1990.

6. Дополнение N 5 к Информационному указателю отраслевых методических документов. ОКА ВНИИприрода. - Л: Изд. ГГО, 1991.

7. Предметный указатель лабораторных методик измерения концентрации загрязняющих веществ в промышленных выбросах по веществам, ОКА ВНИИприрода. - Л.: Изд. ГГО, 1988.

8. Предметный указатель лабораторных методик измерения концентрации загрязняющих веществ в промышленных выбросах по веществам, ОКА ВНИИприрода. -Л.: Изд. ГГО, 1990.

Текст документа сверен по:
официальное издание
Всесоюзный научно-исследовательский институт
охраны природы и заповедного дела - СПб, 1991